NEED-...-08-4...
 programmable relays

- Programmable relays with LCD display or without display, exceptional simplicity of programming in language LAD and STL - page 5
- 8 inputs: AC or DC voltages $\cdot 4$ outputs: relay or transistor
- LED signaling the status of the relay and inputs/outputs \cdot Cooperation with communication modules NEED-MODBUS • Mounting on 35 mm rail mount or on panel mounting \cdot Control of applications - page 6
- Compliance with standards EN 61131-2, EN 50178
- Recognitions, certifications, directives: RoHS, (\in EH[

Supply voltage

230 V
12, 24, 220 V
$230 \mathrm{VAC}: 95 \ldots 260 \mathrm{~V}$ AC 12 V DC: $10,2 \ldots 14,4 \mathrm{~V}$ DC 24 V DC: $19,6 \ldots 28,8 \mathrm{~V}$ DC 220 V DC: $154 \ldots 242 \mathrm{~V}$ DC
$<8,0$ VA
<3,0 W
$47 . . .63 \mathrm{~Hz}$

6 (11-16)
$2(17-18) \quad$ AC or $D C$ voltage
230 V AC: $85 \ldots 260$ V AC 50 Hz 12 V DC: $8 \ldots 26 \mathrm{~V}$ DC
24 V DC: $15 \ldots . .40 \mathrm{~V}$ DC 220 V DC: $80 \ldots . .260 \mathrm{~V}$ DC
$230 \mathrm{~V} \mathrm{AC}: 0 . . .40 \mathrm{~V}$ AC $50 \mathrm{~Hz} \quad 12 \mathrm{~V} C:-1,5 \ldots 4 \mathrm{~V}$ DC
$24 \mathrm{VDC}:-3 \ldots 5 \mathrm{~V}$ DC $220 \mathrm{VDC}: 0 . . .40 \mathrm{~V}$ DC
$230 \mathrm{VAC}: 0,6 \mathrm{~mA}(11-14) \quad 8,0 \mathrm{~mA}(15-16) \quad 0,9 \mathrm{~mA}(17-18)$
$12 \mathrm{VDC}: 3,3 \mathrm{~mA}(11-16) \quad 1,1 \mathrm{~mA}(17-18)$
$24 \mathrm{VDC}: 3,3 \mathrm{~mA}(11-16) \quad 2,0 \mathrm{~mA}(17-18)$
220 V DC: $0,6 \mathrm{~mA}(11-16) \quad 1,1 \mathrm{~mA}(17-18)$
230 V AC: $0 . . .255 \mathrm{~V}$ AC 50 Hz
12 V DC, 24 V DC: $0 \ldots 12,75$ / $0 \ldots 25,5 \mathrm{~V}$ DC
220 V DC: $0 . . .255$ V DC

Outputs

Number and type of outputs	
Max. voltage	
Min. voltage	AC1
Rated load	DC1
Min. current	
Resistance	

Insulation according to EN 60664-1
Insulation rated voltage
Rated surge voltage
- inputs - outputs
Over

Overvoltage category
Insulation pollution degree

Dielectric strength

- inputs - outputs
- contact clearance

General data

Operating / release time (typical values)
Electrical life

- resistive AC1
- DC L/R=40 ms

Mechanical life (cycles)
Dimensions ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$)
Weight

Ambient temperature	• storage
(non-condensation and/or icing)	• operating
Cover protection category	

$\begin{array}{ll} \text { relay: } \quad 4 \mathrm{NO}(\mathrm{Q} 1-\mathrm{Q}))^{(2)} \\ \text { transistor: } & 4 \mathrm{NO}(\mathrm{Q1}-\mathrm{Q}))^{(3} \end{array}$	
250 V AC ©, 30 V DC ©	
10 V (2)	
$10 \mathrm{~A} / 250 \mathrm{~V}$ AC ${ }^{\text {a }}$	
$10 \mathrm{~mA}{ }^{\text {a }}$	1 mA
$\leq 100 \mathrm{~m} \Omega$ 2	
300 V AC	
$2500 \mathrm{~V} 1,2 / 50 \mu \mathrm{~s}$	
1	
2	
2000 V AC	type of ins
1000 V AC	type of cle
$7 \mathrm{~ms} / 3 \mathrm{~ms}$ (2)	
> $0,7 \times 10^{5}$	10 A, 250
$>10^{5}$	0,15 A, 22
$>3 \times 10^{7}$	
$90 \times 72 \times 55 \mathrm{~mm}$	
max. 250 g	
$-40 \ldots+70^{\circ} \mathrm{C}$	
$-20 \ldots+55^{\circ} \mathrm{C}$	
IP 20	EN 60529

Physical resources

Mode switch	STOP/RUN
LCD display ©	preview of variables, illuminated, of high contrast (4 lines 12 characters each)
Keyboard (4)	set of program parameters
Programmable function buttons ©	4 (B1-B4)
LED indicators	LED three-coloured - relay status (green: RUN, yellow: STOP, red: ERROR) yellow LEDs - output status green LEDs - input status
Internal potentiometer $\boldsymbol{\ominus}$	for analog value setting
Real time RTC clock	with automatic time change summer / winter for various time zones (EU, GB, US, RU)
Connection with stopper	for relay programming and external memory card connection
Program resources	
Timers ©	NEED-...-22-...-D: 32 (T1 - T32) NEED-...-11-...: 8 (T1 - T8) time range $10 \mathrm{~ms} . . .99 \mathrm{~h} 59 \mathrm{~min}$., resolution 10 ms , accuracy $\pm 1 \%$ of the set value $+0 . . .1 \mathrm{~ms}$
Bidirectional counters ©	8 (C1-C8), values 0-65535
Fast bidirectional counter / meter (4)	measurement of frequency up to 20 kHz (digital input 14)
Clocks	NEED-...-22-...-D: 8 (H1 - H8) NEED-...-11-...: 4 (H1-H4)
Comparators of analog values	NEED-...-22-...-D: 16 (A1-A16) NEED-...-11-...: 8 (A1-A8)
Markers	NEED-...-22-..-D: 64 (M1 - M64) NEED-...11-...: 16 (M1 - M16)
Text markers ©	8 (MT1 - MT8)
System structure	
NEED-...	programmable relay (see "Table of codes")
NEED-PC-15B (RS232) NEED-PC-15C (USB)	cables for programming and diagnostics, for connection to PC computer
NEED-M-4KB (NEED-...-22-...-D) NEED-M-1KB (NEED-...-11-...)	external memory cards (4 kB or 1 kB) 0
PC NEED	software for editing, compiling, programming of the relay and the external memory card (language: graphic LAD and text STL), user's manual: www.need.com.pl
NEED-MODBUS	communication module NEED Master / ModBus RTU Slave

Front panel description

1 Supply terminals 2 Digital input terminals
3 Analog-digital input terminals
4 Openings of $5,5 \mathrm{~mm}$ diameter for panel mounting with two M4 screws

5 LED indicator (three-coloured) of the relay status
6 STOP/RUN mode switch
7 Potentiometer for analog value setting
8 Relay programming and external memory card connection, secured by stopper

9 Output terminals
10 LED indicators (yellow) of output status 11 LED indicators (green) of input status 12 Keyboard 13 LCD display

Connection diagram - supply connection

NEED-230AC-..-08-4R-
$230 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz}(95 \ldots 260 \mathrm{VAC}), \mathrm{L}=230 \mathrm{VAC}, \mathrm{N}=0 \mathrm{~V}$
NEED-12DC-..-08-4R-.
12 V DC ($10,2 \ldots 14,4 \mathrm{~V} D C), \mathrm{L}=+12 \mathrm{~V} \mathrm{DC}, \mathrm{N}=0 \mathrm{~V}$
NEED-24DC-..-08-4.
24 V DC ($19,6 \ldots 28,8 \mathrm{~V} D C), L=+24 \mathrm{~V} D, \mathrm{~N}=0 \mathrm{~V}$
NEED-220DC-..-08-4R-
220 V DC (154... 242 V DC), L = +220 V DC, $\mathrm{N}=0 \mathrm{~V}$

Connection diagrams - digital inputs

NEED-12DC-..-08-4R-.	$\mathrm{L}=+12 \mathrm{~V} \mathrm{DC}, \mathrm{N}=0 \mathrm{~V}$
Logic state "1": $8 . . .26 \mathrm{~V}$ DC	11-16: $3,3 \mathrm{~mA}, 17$ - 18: $1,1 \mathrm{~mA}$
Logic state "0": -1,5..4 V DC	
NEED-24DC-..-08-4.-	$\mathrm{L}=+24 \mathrm{~V} \mathrm{DC}, \mathrm{N}=0 \mathrm{~V}$
Logic state "1": $15 . . .40 \mathrm{~V}$ DC	11-16: 3,3 mA, 17-18: $2,0 \mathrm{~mA}$
Logic state "0": $-3 . .5 \mathrm{~V}$ DC	
NEED-220DC-..-08-4R-.	$\mathrm{L}=+220 \mathrm{~V} \mathrm{DC}, \mathrm{N}=0 \mathrm{~V}$
Logic state "1": $80 \ldots . .260$ V DC	11-16: $0,6 \mathrm{~mA}, 17$ - 18: $1,1 \mathrm{~mA}$
gic state "0": $0 . . .40 \mathrm{~V}$ DC	

NEED-230AC-..-08-4R
Logic state "1": $85 . . .260$ V AC 50 Hz
$=230 \mathrm{VAC}, \mathrm{N}=0 \mathrm{~V}$
I1-14: 0,6 mA
15-16: 8,0 mA
17 - 18: 0,9 mA
Logic state "0": $0 \ldots 40$ V AC 50 Hz

Connection diagram - analog-digital inputs

NEED-230AC-..-08-4R
$0 . .255$ V AC 50 Hz (1)
NEED-12DC-..-08-4R-.
0...12,75 / 0...25,5 V DC (1) 17 - $18: 1,1 \mathrm{~mA}$

NEED-24DC-..-08-4.-
$0 . . .12,75$ / 0...25,5 V DC (1) 17 - $18: 2,0 \mathrm{~mA}$
NEED-220DC-..-08-4R-
0... 255 V DC (1)

Connection diagrams - digital outputs

NEED-......-08-4R-.
relay outputs Q1-Q4: $10 \mathrm{~A}, 250 \mathrm{~V} \mathrm{AC}$

NEED-24DC-..-08-4T-.
transistor outputs Q1-Q4: 0,5 A, 24 V DC

Mechanical mounting

Mounting

Sub-assemblies

Any operation position - mounting distances for walls with terminals

Dimensions

Mounting, connection to PC computer

Relays NEED-...-08-4... are designed for direct mounting on 35 mm rail mount acc. to EN 60715 or on panel mounting with two M4 screws). Operational position - any. Connections: max. cross section of the cables: $1 \times 2,5 \mathrm{~mm}^{2} / 2 \times 1,0 \mathrm{~mm}^{2}(1 \times 14 / 2 \times 17$ AWG), cables to PC computer: NEED-PC-15B (RS232), NEED-PC-15C (USB).

Table of codes
Table 1

Programmable relay code	Supply voltage	Version	Number of inputs	Number and type of outputs	Features
NEED-230AC-22-08-4R-D	230 V AC	22	8	4 relay	LCD display, keyboard
NEED-230AC-11-08-4R	230 V AC	11	8	4 relay	-
NEED-12DC-22-08-4R-D	12 V DC	22	8	4 relay	LCD display, keyboard
NEED-12DC-11-08-4R	12 V DC	11	8	4 relay	-
NEED-24DC-22-08-4R-D	24 V DC	22	8	4 relay	LCD display, keyboard
NEED-24DC-11-08-4R	24 V DC	11	8	4 relay	-
NEED-24DC-22-08-4T-D	24 V DC	22	8	4 transistor	LCD display, keyboard
NEED-24DC-11-08-4T	24 V DC	11	8	4 transistor	-
NEED-220DC-22-08-4R-D	220 V DC	22	8	4 relay	LCD display, keyboard
NEED-220DC-11-08-4R	220 V DC	11	8	4 relay	-

The data in bold type relate to the standard versions of the relays.

Exceptional simplicity of programming

Software PC NEED

A computer program which allows editing, compiling and downloading of a program to the memory of a programmable relay.

The resources of the relay may be monitored in course of operation, owing to which the user may be currently informed about the status of the inputs, outputs, timers, counters, clocks, comparators, etc.

The simplicity and variety of the program edition (text or graphics) make the PC NEED a very convenient tool, owing to which even complex applications are made very quickly, and their start-up time is short.
Hardware requirements: any computer of PC class with RS232 or USB interface and VGA graphic card, operating system - Windows 2000^{\circledR}, Windows XP ${ }^{\circledR}$, Windows Vista ${ }^{\circledR}$, Windows 7^{\circledR}, Windows 8^{\circledR}.

Program printout

- LAD or STL,
- configuration parameters.

Preview of variables:

- possibility to monitor the relay's resources.

Resources settings:

- possibility to set the parameters of timers, counters, clocks, comparators, etc.,
simple operation and understandable menu, editable alert texts and definitions of keyboard buttons.

STL language:

- possibility of conversion from LAD to text language,
- possibility of programming in text editor and further copying of the application, the language syntax highlighted,
- setting customized colors and fonts.
- simplicity of programming which allows quick application designing,
- symbolic labels of individual elements,
- easy creation of applications based upon an electrical chart,
- possibility of inserting comments, color and font configurations,
- ladder preview to facilitate the start of the software.

Functions of NEED relay

The NEED programmable relay is a product based on the Polish know-how which is perfectly implemented in applications of industrial automatics. The relay is an interesting alternative for similar solutions offered by other manufacturers due to its numerous outstanding advantages.

1) Preview of variables as a tool for monitoring all the resources in the relay.
2) A wide range of analog-digital inputs and possibility of configuration of $D C$ inputs as voltage or current ones.
3) The mode of monitoring three-phase voltage for the 230AC-...-16-8R-. version.
4) Possibility to read the program structure existing in the relay, including the symbolic names assigned to individual elements.
5) Remanence mode - possibility of identifying some resources of the relay, which might be maintained when the supply voltage is off.
6) Fast bidirectional counter / meter of frequency - measurement up to 20 kHz .
7) Edition of texts of alerts shown on the display, which include the variables of the relay.
8) Four keys of the keyboard to be used in LAD or STL languages.

Control of applications

Management of a parking lot with limited number of places

The parking lot may operate in timing mode (from ... to ...) or in permanent mode. The sensors at the entrance and exit help to define the number of cars in the parking lot and to compare the number with the preset number of places. When the maximum number of vehicles are parked, the information "NO PLACES AVAILABLE" is lit at the entrance. Additionally, the entrance gate remains closed as long as a vehicle leaves the parking lot.

Segregation of details in production process

Segregation of details on stroke feed according to their height. Two height sensors of the appropriate range.

Controller of two pumps - direct start-up

Alternate operation of pumps - automatic or manual. Sequence control of the pumps - two levels of switching on, one level of switching off. Automatic start-up of the second pump in case of a failure of the first one. Protection against dry operation Outlets to the external alarm signaling (failure of the pump).

Control of lighting and drives

 of ventilatorsVoltage central switching on and off - manual or automatic switching according to timing schedule. Possibility of flexible shaping of the function of lighting for each room.

Control of a machine for wire mesh production

Control of the squashing unit which bends the end parts of the wires of the mesh so to avoid injuries. The design of the unit is based on two pneumatic servo-motors connected to the compressed air supply source. The control system protects also against failures in course of production.

Control of moving stairways
Control of the direction of movement (up and down). Detection of passengers on the stairway on the basis of the signals from movement detectors.

