Logic panel

LP Series

Instruction Manual

LP Series

Preface

Thank you very much for selecting Autonics products.
This user manual contains information about the product and its proper use, and should be kept in a place where it will be easy to access.

LP series Instruction Manual Guide

- Please familiarize yourself with the information in this manual before using the product.
- This manual provides detailed information on the product's features. It does not offer any guarantee concerning matters beyond the scope of this manual.
- This manual may not be edited or reproduced in either part or whole without permission.
- This programming manual is not provided as part of the product package. Please visit our home-page (www.autonics.com) to download a copy.
- The manual's content may vary depending on changes to the product's software and other unforeseen developments within Autonics, and is subject to change without prior notice. Upgrade notice is provided through our homepage.
- We contrived to describe this manual more easily and correctly. However, if there are any corrections or questions, please notify us these on our homepage.

LP series Instruction Manual Symbols

Symbol	Description
Note	Supplementary information for a particular feature.
Warning	Failure to follow instructions can result in serious injury or death.
A Caution	Failure to follow instructions can lead to a minor injury or product damage.
Ex.	An example of the concerned feature's use.
※1	Annotation mark.

※The specifications and dimensions of this manual are subject to change without any notice.

Table of Contents

Preface iii
LP series Instruction Manual Guide iv
LP series Instruction Manual Symbols V
Table of Contents vi
1 Structures of instruction name 13
1.1 Structure by data type 13
1.2 Structure by data processing 14
2 Instruction 15
2.1 Basic instruction list 15
2.1.1 Non processing instruction 15
2.1.2 Contact instruction 15
2.1.3 Output instruction 16
2.1.4 Reversal instruction 16
2.1.5 Stack instruction 17
2.1.6 Exit instruction 17
2.2 Application instruction 18
2.2.1 Counter instruction 18
2.2.2 Timer instruction 18
2.2.3 Control instruction 18
2.2.4 Branch instruction 19
2.2.5 Loop instruction 19
2.2.6 Master control instruction 19
2.2.7 Interrupt instruction. 19
2.2.8 Watchdog timer 20
2.2.9 Input comparison instruction 20
2.2.10 Comparison instruction 23
2.2.11 Transmission instruction 23
2.2.12 Exchange instruction 24
2.2.13 Rotation instruction 25
2.2.14 Movement instruction 26
2.2.15 Arithmetic operation instruction 26
2.2.16 Logical operation instruction 30
2.2.17 BIN/BCD instruction 31
2.2.18 String conversion instruction 32
2.2.19 Code conversion instruction 33
2.2.20 Sign reversal instruction 33
2.2.21 Data conversion instruction 33
2.2.22 Refresh instruction 33
2.2.23 Display instruction 33
2.2.24 Clock instruction 34
2.2.25 Motion instruction 34
3 Instruction Description 37
3.1 Basic instruction 37
3.1.1 Non processing instruction (NOP) 37
3.1.2 Contact instruction(LOAD) 38
3.1.3 Contact instruction(LOADN) 39
3.1.4 Contact instruction(LOADP) 40
3.1.5 Contact instruction(LOADF) 41
3.1.6 Contact instruction(AND) 42
3.1.7 Contact instruction(ANDN) 43
3.1.8 Contact instruction(ANDP) 44
3.1.9 Contact instruction(ANDF) 45
3.1.10 Contact instruction(ANDL) 46
3.1.11 Contact instruction(OR) 47
3.1.12 Contact instruction(ORN) 48
3.1.13 Contact instruction(ORP) 49
3.1.14 Contact instruction(ORF) 50
3.1.15 Contact instruction(ORL) 51
3.1.16 Output instruction(OUT) 52
3.1.17 Output instruction(OUT Syyy.xx) 53
3.1.18 Output instruction(OUTP) 54
3.1.19 Output instruction(OUTF) 55
3.1.20 Output instruction(SET) 56
3.1.21 Output instruction(SET Syyy.xx) 57
3.1.22 Output instruction(RST) 58
3.1.23 Reversal instruction(ALT) 59
3.1.24 Reversal instruction(NOT) 60
3.1.25 Stack instruction(MPUSH) 61
3.1.26 Stack instruction(MLOAD) 62
3.1.27 Stack instruction(MPOP) 63
3.1.28 Exit instruction(END) 64
3.2 Application instruction 65
3.2.1 Counter instruction(CTU) 65
3.2.2 Counter instruction(CTD) 66
3.2.3 Counter instruction(CTUD) 67
3.2.4 Counter instruction(CTR) 68
3.2.5 Timer instruction(TON) 69
3.2.6 Timer instruction(TOFF) 70
3.2.7 Timer instruction(TMR) 71
3.2.8 Timer instruction(TMON) 72
3.2.9 Timer instruction(TRTG) 73
3.2.10 Control instruction(JMP) 74
3.2.11 Control instruction(LABEL) 75
3.2.12 Control instruction(FCALL) 76
3.2.13 Control instruction(FUNC) 77
3.2.14 Branch instruction(CALL) 78
3.2.15 Branch instruction(SUBRT) 79
3.2.16 Branch instruction(RET) 80
3.2.17 Loop instruction(FOR) 81
3.2.18 Loop instruction(NEXT) 82
3.2.19 Loop instruction(BREAK) 83
3.2.20 Master control instruction(MCS) 84
3.2.21 Master control instruction(MCR) 85
3.2.22 Interrupt instruction(EI) 86
3.2.23 Interrupt instruction(DI) 87
3.2.24 Interrupt instruction(ETI) 88
3.2.25 Interrupt instruction(EEI) 89
3.2.26 Interrupt instruction(DTI) 90
3.2.27 Interrupt instruction(DEI) 91
3.2.28 Interrupt instruction(TINT) 92
3.2.29 Interrupt instruction(EINT) 93
3.2.30 Interrupt instruction(IRET) 94
3.2.31 Watchdog timer(WDT) 95
3.2.32 Input comparison instruction(LOAD=) 96
3.2.33 Input comparison instruction(LOAD>) 97
3.2.34 Input comparison instruction(LOAD<) 98
3.2.35 Input comparison instruction(LOAD<>) 99
3.2.36 Input comparison instruction(LOAD>=) 100
3.2.37 Input comparison instruction(LOAD<=) 101
3.2.38 Input comparison instruction(DLOAD=) 102
3.2.39 Input comparison instruction(DLOAD>) 103
3.2.40 Input comparison instruction(DLOAD<) 104
3.2.41 Input comparison instruction(DLOAD<>) 105
3.2.42 Input comparison instruction(DLOAD>=) 106
3.2.43 Input comparison instruction(DLOAD<=) 107
3.2.44 Input comparison instruction(AND=) 108
3.2.45 Input comparison instruction(AND>) 109
3.2.46 Input comparison instruction(AND<) 110
3.2.47 Input comparison instruction(AND<>) 111
3.2.48 Input comparison instruction(AND>=) 112
3.2.49 Input comparison instruction(AND<=) 113
3.2.50 Input comparison instruction(DAND=) 114
3.2.51 Input comparison instruction(DAND>) 115
3.2.52 Input comparison instruction(DAND<) 116
3.2.53 Input comparison instruction(DAND<>) 117
3.2.54 Input comparison instruction(DAND>=) 118
3.2.55 Input comparison instruction(DAND<=) 119
3.2.56 Input comparison instruction(OR=) 120
3.2.57 Input comparison instruction(OR>) 121
3.2.58 Input comparison instruction($\mathrm{OR}<$) 122
3.2.59 Input comparison instruction($\mathrm{OR}<>$) 123
3.2.60 Input comparison instruction($O R>=$) 124
3.2.61 Input comparison instruction $(\mathrm{OR}<=)$ 125
3.2.62 Input comparison instruction(DOR=) 126
3.2.63 Input comparison instruction(DOR>) 127
3.2.64 Input comparison instruction(DOR<) 128
3.2.65 Input comparison instruction(DOR<>) 129
3.2.66 Input comparison instruction(DOR>=) 130
3.2.67 Input comparison instruction(DOR<=) 131
3.2.68 Comparison instruction(CMP) 132
3.2.69 Comparison instruction(DCMP) 133
3.2.70 Comparison instruction(ACMP) 134
3.2.71 Comparison instruction(CMPL) 135
3.2.72 Comparison instruction(DCMPL) 136
3.2.73 Comparison instruction(BWCMP) 137
3.2.74 Comparison instruction(DBWCMP) 139
3.2.75 Transmission instruction(BMOV) 141
3.2.76 Transmission instruction(MOV) 142
3.2.77 Transmission instruction(DMOV) 143
3.2.78 Transmission instruction(BMOVL) 144
3.2.79 Transmission instruction(MOVL) 145
3.2.80 Transmission instruction(DMOVL) 146
3.2.81 Transmission instruction(BMOVG) 147
3.2.82 Transmission instruction(MOVG) 148
3.2.83 Transmission instruction(DMOVG) 149
3.2.84 Transmission instruction(BCMOV) 150
3.2.85 Transmission instruction(CMOV) 151
3.2.86 Transmission instruction(DCMOV) 152
3.2.87 Exchange instruction(XCH) 153
3.2.88 Exchange instruction(DXCH) 154
3.2.89 Exchange instruction(AXCH) 155
3.2.90 Exchange instruction(SWAP) 156
3.2.91 Exchange instruction(DSWAP) 157
3.2.92 Rotation instruction(ROR) 158
3.2.93 Rotation instruction(DROR) 159
3.2.94 Rotation instruction(AROR) 160
3.2.95 Rotation instruction(RORC) 161
3.2.96 Rotation instruction(DRORC) 162
3.2.97 Rotation instruction(ARORC) 163
3.2.98 Rotation instruction(ROL) 164
3.2.99 Rotation instruction(DROL) 165
3.2.100 Rotation instruction(AROL) 166
3.2.101 Rotation instruction(ROLC) 167
3.2.102 Rotation instruction(DROLC) 168
3.2.103 Rotation instruction(AROLC) 169
3.2.104 Movement instruction(SFTR) 170
3.2.105 Movement instruction(ASFTR) 171
3.2.106 Movement instruction(SFTL) 172
3.2.107 Movement instruction(ASFTL) 173
3.2.108 Movement instruction(WSFTR) 174
3.2.109 Movement instruction(WSFTL) 175
3.2.110 Arithmetic operation instruction(ADD) 176
3.2.111 Arithmetic operation instruction(DADD) 177
3.2.112 Arithmetic operation instruction(ADDU) 178
3.2.113 Arithmetic operation instruction(DADDU) 179
3.2.114 Arithmetic operation instruction(ADDL) 180
3.2.115 Arithmetic operation instruction(DADDL) 181
3.2.116 Arithmetic operation instruction(ADDLU) 182
3.2.117 Arithmetic operation instruction(DADDLU) 183
3.2.118 Arithmetic operation instruction(SUB) 184
3.2.119 Arithmetic operation instruction(DSUB) 185
3.2.120 Arithmetic operation instruction(SUBU) 186
3.2.121 Arithmetic operation instruction(DSUBU) 187
3.2.122 Arithmetic operation instruction(SUBL) 188
3.2.123 Arithmetic operation instruction(DSUBL) 189
3.2.124 Arithmetic operation instruction(SUBLU) 190
3.2.125 Arithmetic operation instruction(DSUBLU) 191
3.2.126 Arithmetic operation instruction(MUL) 192
3.2.127 Arithmetic operation instruction(DMUL) 193
3.2.128 Arithmetic operation instruction(MULU) 194
3.2.129 Arithmetic operation instruction(DMULU) 195
3.2.130 Arithmetic operation instruction(MULL) 196
3.2.131 Arithmetic operation instruction(DMULL) 197
3.2.132 Arithmetic operation instruction(MULLU) 198
3.2.133 Arithmetic operation instruction(DMULLU) 199
3.2.134 Arithmetic operation instruction(DIV) 200
3.2.135 Arithmetic operation instruction(DDIV) 201
3.2.136 Arithmetic operation instruction(DIVU) 202
3.2.137 Arithmetic operation instruction(DDIVU) 203
3.2.138 Arithmetic operation instruction(DIVL) 204
3.2.139 Arithmetic operation instruction(DDIVL) 205
3.2.140 Arithmetic operation instruction(DIVLU) 206
3.2.141 Arithmetic operation instruction(DDIVLU) 207
3.2.142 Arithmetic operation instruction(INC) 208
3.2.143 Arithmetic operation instruction(DINC) 209
3.2.144 Arithmetic operation instruction(DEC) 210
3.2.145 Arithmetic operation instruction(DDEC) 211
3.2.146 Arithmetic operation instruction(ADDB) 212
3.2.147 Arithmetic operation instruction(DADDB) 213
3.2.148 Arithmetic operation instruction(ADDBL) 214
3.2.149 Arithmetic operation instruction(DADDBL) 215
3.2.150 Arithmetic operation instruction(SUBB) 216
3.2.151 Arithmetic operation instruction(DSUBB) 217
3.2.152 Arithmetic operation instruction(SUBBL) 218
3.2.153 Arithmetic operation instruction(DSUBBL) 219
3.2.154 Arithmetic operation instruction(MULB) 220
3.2.155 Arithmetic operation instruction(DMULB) 221
3.2.156 Arithmetic operation instruction(MULBL) 222
3.2.157 Arithmetic operation instruction(DMULBL) 223
3.2.158 Arithmetic operation instruction(DIVB) 224
3.2.159 Arithmetic operation instruction(DDIVB) 225
3.2.160 Arithmetic operation instruction(DIVBL) 226
3.2.161 Arithmetic operation instruction(DDIVBL) 227
3.2.162 Arithmetic operation instruction(INCB) 228
3.2.163 Arithmetic operation instruction(DINCB) 229
3.2.164 Arithmetic operation instruction(DECB) 230
3.2.165 Arithmetic operation instruction(DDECB) 231
3.2.166 Logical operation instruction(WAND) 232
3.2.167 Logical operation instruction(DAND) 233
3.2.168 Logical operation instruction(AAND) 234
3.2.169 Logical operation instruction(WANDL) 235
3.2.170 Logical operation instruction(DANDL) 236
3.2.171 Logical operation instruction(WOR) 237
3.2.172 Logical operation instruction(DOR) 238
3.2.173 Logical operation instruction(AOR) 239
3.2.174 Logical operation instruction(WORL) 240
3.2.175 Logical operation instruction(DORL) 241
3.2.176 Logical operation instruction(XOR) 242
3.2.177 Logical operation instruction(DXOR) 243
3.2.178 Logical operation instruction(AXOR) 244
3.2.179 Logical operation instruction(XORL) 245
3.2.180 Logical operation instruction(DXORL) 246
3.2.181 Logical operation instruction(XNR) 247
3.2.182 Logical operation instruction(DXNR) 248
3.2.183 Logical operation instruction(AXNR) 249
3.2.184 Logical operation instruction(XNRL) 250
3.2.185 Logical operation instruction(DXNRL) 251
3.2.186 BIN/BCD conversion instruction(BIN2BCD) 252
3.2.187 BIN/BCD conversion instruction(DBIN2BCD) 253
3.2.188 BIN/BCD conversion instruction(BCD2BIN) 254
3.2.189 BIN/BCD conversion instruction(DBCD2BIN) 255
3.2.190 String conversion instruction(BIN2HASC) 256
3.2.191 String conversion instruction(DBIN2HASC) 257
3.2.192 String conversion instruction(HASC2BIN) 258
3.2.193 String conversion instruction(DHASC2BIN) 259
3.2.194 String conversion instruction(BCD2DASC) 260
3.2.195 String conversion instruction(DBCD2DASC) 261
3.2.196 String conversion instruction(DASC2BIN) 262
3.2.197 String conversion instruction(DDASC2BIN) 263
3.2.198 String conversion instruction(STR2ASC) 264
3.2.199 String conversion instruction(DASC2BCD) 265
3.2.200 String conversion instruction(DDASC2BCD) 266
3.2.201 String conversion instruction(BIN2DASC) 267
3.2.202 String conversion instruction(DBIN2DASC) 268
3.2.203 Code conversion instruction(GRY2BIN) 269
3.2.204 Code conversion instruction(DGRY2BIN) 270
3.2.205 Code conversion instruction(BIN2GRY) 271
3.2.206 Code conversion instruction(DBIN2GRY) 272
3.2.207 Sign reversal instruction(NEG) 273
3.2.208 Sign reversal instruction(DNEG) 274
3.2.209 Data conversion instruction(DECO) 275
3.2.210 Data conversion instruction(ENCO) 276
3.2.211 Data conversion instruction(EXT) 277
3.2.212 Refresh instruction(REF) 278
3.2.213 Display instruction(SEG) 279
3.2.214 Clock instruction(TCMP) 281
3.2.215 Clock instruction(TADD) 282
3.2.216 Clock instruction(TSUB) 283
3.2.217 Clock instruction(TRD) 284
3.2.218 Clock instruction(TWR) 285
3.2.219 Clock instruction(HOUR) 286
3.2.220 Clock instruction(TZCP) 287
3.2.221 Motion instruction(MTVDM) 289
3.2.222 Motion instruction(MTPDM) 289
3.2.223 Motion instruction(MTIDM) 291
3.2.224 Motion instruction(MTMEC) 292
3.2.225 Motion instruction(MTEMS) 293
3.2.226 Motion instruction(MTCPP) 294
3.2.227 Motion instruction(MTFOS) 295
3.2.228 Motion instruction(MTSRS) 296
3.2.229 Motion instruction(MTOBC) 297
3.2.230 Motion instruction(MTOVV) 299
3.2.231 Motion instruction(MTOVP) 300
3.2.232 Motion instruction(MTIPT) 301
3.2.233 Motion instruction(MTUAI) 302

1 Structures of instruction name

The structure of instruction name is divided into three parts and each part represents data type, instruction name, and data processing method respectively. The data type is usually located in front of instruction name, and the data processing method is located after the instruction name(Limited to a few of them).

1.1 Structure by data type

(1) By data size

1) Bit data type instruction

It has an instruction structure of Bxxxx after Bit's B.
Ex) BMOV, BMOVL, BMOVG etc.
2) Nibble data type instruction (4bit)

It has an instruction structure of Nxxxx after Nibble's N .
3) Half word data type instruction (8bit) It has an instruction structure of Hxxxx after Half Word's H .
4) Word data type instruction (1word) It has an instruction structure of xxxx without Word name.
Ex) MOV, MOVL, MOVG \qquad etc.
5) Double word data instruction (2word) It has an instruction structure of Dxxx after Double word's D. Ex) DMOV, DMOVL, DMOVG etc.
6) User-defined data type instruction It has an instruction structure of Axxxx, after Any bit's A. Ex) AOR, AAND, AXOR, etc.

(2) By data sign

There are signed and unsigned data types, and the former is typically used with omitting its name. On the other hand, the latter is used with " U " and " U " is positioned in the far last part of the instruction name.
If there is name according to data processing, in case of ($x x x L, x x x G$) it is placed to the back For further details, refer to '1.2 Structure by data processing'.

- If there is no data processing method part: MULU, ADDU, SUBU, \qquad etc.
- If there is a data processing method part: MULLU, ADDLU, SUBLU \qquad etc.

(3) By BCD data

BCD data has an instruction structure of $x x x B$ after BCD's B.
Be sure that the data processing method part(List, Group) is always positioned after the BCD part.

- If there is no data processing method name.(1:1 process): ADDB, MULB, SUBB, etc.
- If the data processing method name is 'List': ADDBL, MULBL, SUBBL, etc.

1.2 Structure by data processing

(1) $\mathbf{1 : 1}$ processing instruction

It has an instruction structure of xxx with omitting the name.
Ex) MOV,
(2) 1:N processing instruction

It has an instruction structure of $x x x L$ after List's "L".
Ex) MOVL,
(3) N:N processing instruction
(S)
(S) +1
(S) +2

It has an instruction structure of $x x x G$ after Group's " G ". Ex) MOVG, ...

Note

Operand

- S: Represents source device
- D: Represents destination device
- $\mathrm{N}:$ Represents the number of devices

2 Instruction

2.1 Basic instruction list

2.1.1 Non processing instruction

Instruction	Ladder symbol	Step	Page
NOP		1	37

2.1.2 Contact instruction

Instruction	Ladder symbol	Step	Page
LOAD	$1 \quad \mid$	1	38
LOADN		1	39
LOADP		2	40
LOADF		2	41
AND		1	42
ANDN		1	43
ANDP		2	44
ANDF		2	45
ANDL		1	46
OR		1	47
ORN		1	48

Instruction	Ladder symbol	Step	Page	
ORP	ORF		2	49
ORL			2	50
O			1	51

2.1.3 Output instruction

Instruction	Ladder symbol	Step	Page
OUT	$-(\mathrm{C}$	1	52
OUT Syyy.xx		1	53
OUTP	$(>)$	2	54
OUTF	(\downarrow)	2	55
SET	$-(S)$	1	56
SET Syyy.xx	$-(S)$	1	57
RST	$-(R)$	1	58

2.1.4 Reversal instruction

Instruction	Ladder symbol	Step	Page
ALT	$-\mathbf{A L T} \quad$ D-	3	59
NOT			

2.1.5 Stack instruction

Instruction	Ladder symbol	Step	Page
MPUSH		1	61
MLOAD		1	62
MPOP		1	63

2.1.6 Exit instruction

Instruction	Ladder symbol	Step	Page
END	$\left.-\begin{array}{\|c\|}\hline\end{array}\right)$	1	64

2.2 Application instruction

2.2.1 Counter instruction

Instruction	Ladder symbol	Step	Page
CTU	$\left.-\begin{array}{ll}\mathbf{U C T U} \\ \mathbf{R}\langle\mathbf{S}\rangle & \mathbf{S} \\ -\mathbf{N}\end{array}\right]$	5	65
CTD	$-\mathbf{D C T U}$ $-\mathbf{R}\langle\mathbf{S}\rangle$ \mathbf{S}	5	66
CTUD	$\begin{array}{ll\|} \hline \mathrm{D} \text { CTUD } & \mathrm{s} \\ = & \mathrm{N} \\ \mathrm{D}\langle\mathrm{~s}\rangle & \mathrm{N} \\ \hline \end{array}$	5	67
CTR		5	68

2.2.2 Timer instruction

Instruction	Ladder symbol	Step	Page
TON	TON S N	5	69
TOFF	TOFF S N	5	70
TMR	-TMR S N	5	71
TMON	TMON S N	5	72
TRTG	-TRTG S N	5	73

2.2.3 Control instruction

Instruction	Ladder symbol	Step	Page
JMP	-JMP LABEL-	3	74
LABEL	- LABEL Label name	3	75
FCALL	FCALL LABEL-	3	76

Instruction	Ladder symbol	Step	Page
FUNC	FUNC LABELH	3	77

2.2.4 Branch instruction

Instruction	Ladder symbol	Step	Page
CALL	- CALL LABEL-	3	78
SUBRT	- SUBRT LABEL-	3	79
RET	-4 RET	1	80

2.2.5 Loop instruction

Instruction	Ladder symbol	Step	Page
FOR	- FOR	3	81
NEXT	$-\boxed{\text { NEXT }}$		
BREAK	$-\quad$ BREAK	1	82

2.2.6 Master control instruction

Instruction	Ladder symbol	Step	Page
MCS	- MCS	\mathbf{N}	2
MCR	- MCR	\mathbf{N}	84
		2	85

2.2.7 Interrupt instruction

Instruction	Ladder symbol	Step	Page
EI	$-\quad$ EI	1	86
DI	DI	1	87

Instruction	Ladder symbol	Step	Page
ETI	-ETI N-	1	88
EEI	EEI N	1	89
DTI	DTI	1	90
DEI	DEI	1	91
TINT		1	92
EINT	$-\mathrm{EINT} \quad \mathrm{N}$	1	93
IRET	IRET	1	94

2.2.8 Watchdog timer

Instruction	Ladder symbol	Step	Page
WDT	-$\|c\|$	WDT	1

2.2.9 Input comparison instruction

Instruction	Ladder symbol	Step	Page
LOAD=	$H=s 1$ s2H	5	96
LOAD>	$H>$ s1 s2H	5	97
LOAD<	$H<s 18$	5	98
LOAD<>	$H\rangle$ s1 s2 H	5	99
LOAD>=	$H>=s 1 \quad$ s2 H	5	100

Instruction	Ladder symbol	Step	Page
LOAD<=	$H<=s 1 \quad$ s2 H	5	101
DLOAD=	$H=$ sis s2H	5	102
DLOAD>	$H>$ s1 s2	5	103
DLOAD<	$H<$ s1 s2	5	104
DLOAD<>	$H\langle>$ s1 s2	5	105
DLOAD>=	$H>=$ s1 s2	5	106
DLOAD<=	$H<$ s1 s2	5	107
AND=	$f=$ si s2f	5	108
AND>	$f>$ s1 s2f	5	109
AND<	$f<$ s1 s2f	5	110
AND<>	$f\langle>$ s1 s2f	5	111
AND>=	$f>=s 1 \quad s 2 f$	5	112
AND<=	$f \ll \mathrm{~s} 1 \quad \mathrm{~s} 2 \boldsymbol{}$	5	113
DAND=	$f=s 1 \mathrm{~s} 2 \mathrm{~F}$	5	114
DAND>	$f>$ s1 s2f	5	115

Instruction	Ladder symbol	Step	Page
DAND<	$f<$ s1 s2F	5	116
DAND<>	$f\langle>$ s1 s2	5	117
DAND>=	$f>=$ si s2f	5	118
DAND<=	$f<=$ si s2f	5	119
$\mathrm{OR}=$	$H=s 1$ s2F	5	120
OR>	$\forall>$ s1 s2	5	121
$\mathrm{OR}<$	$\forall<$ s1 s2	5	122
OR<>	$\forall\rangle$ s1 s2	5	123
OR>=	$\forall>=s 1$ s2	5	124
OR<=	$\forall<=s 1$ s2	5	125
DOR=	$\downarrow=$ si s2	5	126
DOR>	$\psi>$ s1 s2 \dagger	5	127
DOR<	$\downarrow<$ s1 s2 \dagger	5	128
DOR<>	\dagger 苒	5	129
DOR>=	$H>=s 1 \quad$ s2 \downarrow	5	130

Instruction	Ladder symbol	Step	Page	
DOR $<=$	$\bigsqcup<=$	$\mathbf{S 1}$	$\mathbf{S 2}$	\square
5	131			

2.2.10 Comparison instruction

Instruction	Ladder symbol	Step	Page
CMP	CMP S1 S2 D	7	132
DCMP	DCMP S1 S2 D	7	133
ACMP	ACMP S1 S2 D N	7	134
CMPL	CMPL S1 S2 D N	9	135
DCMPL	DCMPL S1 S2 D N-	9	136
BWCMP	BWCMP S1 S2 D N	9	137
DBWCMP		9	139

2.2.11 Transmission instruction

Instruction	Ladder symbol	Step	Page
BMOV	- BMOV S D	5	141
MOV	- Mov s D	5	142
DMOV	- DMOV S D	5	143
BMOVL	BMOVL S D N	7	144
MOVL	MOVL S D N	7	145

Instruction	Ladder symbol	Step	Page
DMOVL	-DMOVL S D N	7	146
BMOVG	- BMOVG S D N $^{\text {a }}$	7	147
MOVG	-MOVG S D N	7	148
DMOVG	DMOVG S D N	7	149
BCMOV		5	150
CMOV		5	151
DCMOV	- DCMOV S D	5	152

2.2.12 Exchange instruction

Instruction	Ladder symbol	Step	Page
XCH		5	153
DXCH	-PXCH S1 s2	5	154
AXCH	AXCH S1 S2 N	7	155
SWAP		3	156
DSWAP	DSWAP D	3	157

2.2.13 Rotation instruction

Instruction	Ladder symbol	Step	Page
ROR	ROR S C	5	158
DROR	- DROR S C	5	159
AROR	AROR S N c\|	7	160
RORC	- RORC s c	5	161
DRORC	- DRORC $^{-1}$	5	162
ARORC	AROSC S N C	7	163
ROL	ROL s ch	5	164
DROL	- DROL S c	5	165
AROL	AROL S N c	7	166
ROLC	ROLC s ch	5	167
DROLC	DROLC s c	5	168
AROLC	AROLC S N C	7	169

2.2.14 Movement instruction

Instruction	Ladder symbol	Step	Page
SFTR	- SFTR S N	9	170
ASFTR	- ASFTR S N1 N2	9	171
SFTL	- SFTL S N1 N2	9	172
ASFTL	- ASFTL S N1 N2	9	173
WSFTR	- WSFTR S N1 N2	9	174
WSFTL	- WSFTL S N1 N2	9	175

2.2.15 Arithmetic operation instruction

Instruction	Ladder symbol	Step	Page
ADD	-ADD S1 S2 D	7	176
DADD	-DADD S1 S2 D	7	177
ADDU	ADDU S1 S2 D	7	178
DADDU	DADDU S1 S2 D	7	179
ADDL	ADDL S1 S2 D N	9	180
DADDL	DADDL S1 S2 D N-	9	181
ADDLU	ADDLU S1 S2 D N	9	182
DADDLU	DADDLU S1 S2 D N	9	183

Instruction	Ladder symbol	Step	Page
SUB	-SUB S1 S2 d	7	184
DSUB	- SUB S1 S2 d	7	185
SUBU	SUBU S1 S2	7	186
DSUBU	DSUBU S1 S2 D	7	187
SUBL	SUBL S1 S2 D N	9	188
DSUBL	DSUBL S1 S2 D N	9	189
SUBLU	SUBLU S1 S2 D N	9	190
DSUBLU	DSUBLU S1 S2 D N	9	191
MUL	MUL S1 S2 D	7	192
DMUL	DMUL S1 S2	7	193
MULU	MULU S1 S2	7	194
DMULU	DMULU S1 S2 D	7	195
MULL	MULL S1 S2 D N	9	196
DMULL	DMULL S1 S2 D N	9	197
MULLU	MULLU S1 S2 D N	9	198

Instruction	Ladder symbol	Step	Page
DMULLU	DMULLU S1 S2 D N	9	199
DIV	DIV S1 S2 D	7	200
DDIV		7	201
DIVU	DIVU S1 S2 D	7	202
DDIVU	DDIvU S1 S2 D	7	203
DIVL	-DIVL S1 S2 D	9	204
DDIVL	DDIVL S1 S2 D N	9	204
DIVLU	DIVLU S1 S2 D N	9	206
DDIVLU	DDIVLU S1 S2 D N	9	207
INC	-INC	3	208
DINC		3	209
DEC	$-\operatorname{DEC} \quad \mathrm{D}$	3	210
DDEC	DDEC	3	211
ADDB	ADDB S1 S2 D	7	212
DADDB	DADDB S1 S2 D	7	213

Instruction	Ladder symbol	Step	Page
ADDBL	ADDBL S1 S2 D N	9	214
DADDBL	DADDBL S1 S2 D N	9	215
SUBB	SUBB S1 S2 D N	7	216
DSUBB	DSUBB S1 S2 D	7	217
SUBBL	SUBBL S1 S2 D	9	218
DSUBBL	SUBBL S1 S2 D	9	219
MULB	MULB S1 S2 D	7	220
DMULB	- DMULB S1 S2 D	7	221
MULBL	MULBL S1 S2 D N	9	222
DMULBL	DMULBL S1 S2 D N	9	223
DIVB	DIVB S1 S2 D	7	224
DDIVB	DDIVB S1 S2 D	7	225
DIVBL	DIVBL S1 S2 D N	9	226
DDIVBL	DDIVBL S1 S2 D N	9	227
INCB	-INCB D	3	228

Instruction	Ladder symbol	Step	Page	
DINCB	- DINCB	D		229
DECB	- DECB	D		2
DDECB	- DDECB	D	3	230

2.2.16 Logical operation instruction

Instruction	Ladder symbol	Step	Page
WAND	WAND S1 S2 D	7	232
DAND	DAND S1 S2 D	7	233
AAND	AAND S1 S2 D N	9	234
WANDL	WANDL S1 S2 D N	9	235
DANDL	DANDL S1 S2 D N	9	236
WOR	WOR S1 S2 W $^{\text {WO }}$	7	237
DOR	-DOR S1 $^{-7}$	7	238
AOR	- AOR S1 S2 $\mathrm{Al}^{\text {S }}$	9	239
WORL	WORL S1 S2 D	9	240
DORL	- DORL S1 S2 D N	9	241
XOR		7	242

Instruction	Ladder symbol	Step	Page
DXOR	-DXOR S1 S2 D	7	243
AXOR	AXOR S1 S2 D N	9	244
XORL	XORL S1 S2 D N	9	245
DXORL	DXORL S1 S2 D N-	9	246
XNR	$X N R$ S1 S2 D	7	247
DXNR	-DXNR S1 S2 D\|	7	248
AXNR	AXNR S1 S2 D N	9	249
XNRL	$\xrightarrow{\text { XNRL S1 S2 D N }}$	9	250
DXNRL	DXNRL S1 S2 D N-	9	251

2.2.17 BIN/BCD instruction

Instruction	Ladder symbol	Step	Page
BIN2BCD	$-\mathrm{BIN2BCD} \quad \mathrm{~S} \quad \mathrm{D}$	5	252
DBIN2BCD	$-{ }^{\text {DBIN2BCD }} \mathrm{S}$ D	5	253
BCD2BIN	$-\mathrm{BCD2BIN} \quad S \quad D$	5	254
DBCD2BIN	-DECD2BIN S D	5	255

2.2.18 String conversion instruction

Instruction	Ladder symbol	Step	Page
BIN2HASC	- BIN2HASC S	5	256
DBIN2HASC	-DBIN2HASC S	5	257
HASC2BIN	HASC2BIN S D	5	258
DHASC2BIN	-DHASC2BIN S D	5	259
BCD2DASC	$-\mathrm{BCD2DASC}$ S D	5	260
DBCD2DASC	DBCD2DASC S D	5	261
DASC2BIN	$-\mathrm{DASC2BIN}^{\text {S S }}$	5	262
DDASC2BIN	-DDASC2BIN S D	5	263
STR2ASC	-StR2ASC S D \dagger	7	264
DASC2BCD	-DASC2BCD S D	5	265
DDASC2BCD	-DDASC2BCD S DH	5	266
BIN2DASC	BIN2DASC S D	5	267
DBIN2DASC	DBIN2DASC S D	5	268

2.2.19 Code conversion instruction

Instruction	Ladder symbol	Step	Page
GRY2BIN	- GRY2BIN S D	5	269
DGRY2BIN	- DGRY2BIN S D		5
BIN2GRY	- BIN2GRY S D	270	
DBIN2GRY	- DBIN2GRY S D	5	271

2.2.20 Sign reversal instruction

Instruction	Ladder symbol	Step	Page
NEG	NNEG	D	3
DNEG	DNEG	D	273
		3	274

2.2.21 Data conversion instruction

Instruction	Ladder symbol	Step	Page
DECO	-JECO S D N-1	7	275
ENCO	ENCO S $\mathrm{S}^{\text {S }}$ D N	7	276
EXT	EXT $\mathrm{D}^{\text {E }}$	3	277

2.2.22 Refresh instruction

Instruction	Ladder symbol	Step	Page
REF	- REF D N N		
		5	278

2.2.23 Display instruction

| Instruction | Ladder symbol | Step | Page |
| :--- | :--- | :--- | :--- | :--- |
| SEG | -SEG S D N | 7 | 279 |

2.2.24 Clock instruction

Instruction	Ladder symbol	Step	Page
TCMP	TCMP S1 S2 S3 S4 D	7	281
TADD	-TADD S1 S2 D	7	282
TSUB	$-$TSUB S1 S2 D	7	283
TRD	TRD	3	284
TWR	TWR	3	285
HOUR	HOUR S D1 D2	7	286
TZCP	TZCP S1 S2 S3 D	9	287

2.2.25 Motion instruction

Instruction	Ladder symbol	Step	Page
MTVDM	MTVDM SO S1 S2 S3 S4 S5	9	289
MTPDM	MTPDM SO S1 S2 S3 S4 S5	9	289
MTIDM	MTIDM S0 S1	5	290
MTMEC	MTMEC So	5	292
MTEMS	MTEMS SO	5	293
MTCPP	MTCPP SO S1-	5	294
MTFOS	MTFOS SO	5	295
MTSRS	MTSRS SO	5	296

Instruction	Ladder symbol	Step	Page
MTOBC	MTOBC SO	5	297
MTOVV	MTOVV S0 S1	5	299
MTOVP	MTOVP SO S1	5	300
MTIPT	- MTIPT \quad S0 S1 $^{\text {S }}$ S2 S3	7	301
MTUAI	MTUAI SO S1	5	302

3 Instruction Description

3.1 Basic instruction

3.1.1 Non processing instruction (NOP)

```
Non
processing NOP Applicable model
instruction
1. It is non processing instruction.
2. It is available only for mnemonic program.

\subsection*{3.1.2 Contact instruction(LOAD)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Contact instruction} & LOAD S & \multicolumn{4}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{4}{*}{\[
\begin{array}{|l}
\mathrm{m} \\
\text { 웅 }
\end{array}
\]} & \multirow[b]{3}{*}{\[
\]} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{}} \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{BIT} & X, Y, M, S, T, C, F, UB & & & & \\
\hline & & Contact of bit device & & & & \\
\hline & & Not applicable & & & & 1 \\
\hline
\end{tabular}

\section*{<Ladder>}


When the contact(S) is ON, the corresponding output bit becomes 1 .
<Time chart>


\subsection*{3.1.3 Contact instruction(LOADN)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Contact instruction} & LOADN S & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{3}{*}{\[
\begin{array}{|l}
\hline \mathrm{M} \\
\text { 운 }
\end{array}
\]} & \multirow{3}{*}{\[
\begin{array}{|c}
\mathbb{N} \\
\frac{N}{O}
\end{array}
\]} & \multirow{3}{*}{会} & \multirow[b]{3}{*}{O
O
O
¢} & \multirow{3}{*}{鲕} \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{BIT} & X, Y, M, S, T, C, F, UB & & & & & \\
\hline & & Contact of bit device & & & & & \\
\hline & & Not applicable & & & & & 1 \\
\hline
\end{tabular}
<Ladder>


When the (S) bit turns OFF from ON, the operation result becomes ON from OFF.
<Time chart>


\subsection*{3.1.4 Contact instruction(LOADP)}


\section*{<Ladder>}


As soon as the (S) contact turns ON from OFF, the operation result becomes ON.
<Time chart>


\subsection*{3.1.5 Contact instruction(LOADF)}


\section*{<Ladder>}


As soon as the (S) contact turns OFF from ON, the operation result becomes ON.
<Time chart>


\subsection*{3.1.6 Contact instruction(AND)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Contact instruction} & AND S & \multicolumn{5}{|l|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{3}{*}{\[
\begin{array}{|l}
\hline \mathrm{M} \\
\text { 응 }
\end{array}
\]} & \multirow{3}{*}{\[
\begin{array}{|l}
\hline N \\
\frac{\mathbb{D}}{0}
\end{array}
\]} & \multirow{3}{*}{} & \multirow[b]{3}{*}{} & \multirow{3}{*}{} \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{BIT} & X, Y, M, S, T, C, F, UB & & & & & \\
\hline & & Contact of bit device & & & & & \\
\hline & & Not applicable & & & & & 1 \\
\hline
\end{tabular}

\section*{<Ladder>}


Executes AND operation between the previous operation result and the designated contact(S), and considers it as the operation result.
<Time chart>


\subsection*{3.1.7 Contact instruction(ANDN)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Contact instruction} & \multicolumn{2}{|l|}{ANDN S} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & \multicolumn{7}{|l|}{Available device / Description / Range} \\
\hline \multirow{3}{*}{S} & \multirow[t]{3}{*}{BIT} & X, Y, M, S & , UB & \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline \mathbf{0} \\
\mathbf{0}
\end{array}
\]} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{(\%} \\
\hline & & Contact & & & & & & \\
\hline & & Not appli & & & & & & 1 \\
\hline
\end{tabular}
<Ladder>


Executes AND NOT operation between the previous operation result and the designated contact(S), and considers it as the operation result.
<Time chart>


\subsection*{3.1.8 Contact instruction(ANDP)}


\section*{<Ladder>}


On the rising edge of a pulse, it executes AND operation between the previous operation result and the designated contact(S), and considers it as the operation result.
<Time chart>


\subsection*{3.1.9 Contact instruction(ANDF)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Contact instruction} & ANDF S & \multicolumn{5}{|r|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{3}{*}{\[
\begin{array}{|l|}
\hline \mathrm{T} \\
\mathrm{O} \\
\hline
\end{array}
\]} & \multirow{3}{*}{\[
\begin{array}{|l}
\hline \mathbf{N} \\
\stackrel{\mathbb{N}}{\mathbf{O}}
\end{array}
\]} & \multirow{3}{*}{\[
\begin{array}{|l|}
\hline \frac{\otimes}{2} \\
\end{array}
\]} & \multirow[b]{3}{*}{} & \multirow[b]{3}{*}{帚} \\
\hline \multirow{3}{*}{S} & \multirow[t]{3}{*}{BIT} & X, Y, M, S, T, C, F, UB & & & & & \\
\hline & & Contact of bit device & & & & & \\
\hline & & Not applicable & & & & & 2 \\
\hline
\end{tabular}
<Ladder>


On the falling edge of a pulse, it executes AND operation between the previous operation result and the designated contact(S), and considers it as the operation result.
<Time chart>


\subsection*{3.1.10 Contact instruction(ANDL)}

<Mnemonic \& Ladder>


Executes the AND operation between the block and the block.

[Note]
- You cannot add as device input in ladder.
- Input for instruction is available only for mnemonic.
<Time chart>


\subsection*{3.1.11 Contact instruction(OR)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Contact instruction} & OR S & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{3}{*}{\[
\begin{array}{|l|}
\hline \frac{\pi}{7} \\
\text { O}
\end{array}
\]} & \multirow{3}{*}{\[
\frac{\mathbb{1}}{0}
\]} & \multirow{3}{*}{\[
\]} & \multirow[b]{3}{*}{01
O
O
¢} & \multirow{3}{*}{鲳} \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{BIT} & X, Y, M, S, T, C, F, UB & & & & & \\
\hline & & Contact of bit device & & & & & \\
\hline & & Not applicable & & & & & 1 \\
\hline
\end{tabular}
<Ladder>

<Time chart>

\subsection*{3.1.12 Contact instruction(ORN)}


\section*{<Ladder>}


Executes the ORN operation between the previous operation result and the designated contact(S), and considers it as the operation result.
<Time chart>


\subsection*{3.1.13 Contact instruction(ORP)}

<Ladder>

<Time chart>

On the rising edge of a pulse, executes OR or ORN operation between the previous operation result and designated contact(S), and considers it as the operation result.


\subsection*{3.1.14 Contact instruction(ORF)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Contact instruction} & ORF S & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{3}{*}{\[
\begin{array}{|l}
\hline \frac{\mathrm{m}}{7} \\
\text { O}
\end{array}
\]} & \multirow{3}{*}{\[
\begin{array}{|l|}
\hline \frac{N}{0} \\
\mathbf{O}
\end{array}
\]} & \multirow[b]{3}{*}{边} & \multirow[b]{3}{*}{|l|} & \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{BIT} & X, Y, M, S, T, C, F, UB & & & & & \multirow[t]{2}{*}{魣} \\
\hline & & Contact of bit device & & & & & \\
\hline & & Not applicable & & & & & 2 \\
\hline
\end{tabular}

\section*{<Ladder>}


On the falling edge of a pulse, executes OR or ORN operation between the previous operation result and the designated contact(S), and considers it as the operation result.
<Time chart>


\subsection*{3.1.15 Contact instruction(ORL)}

<Mnemonic \& Ladder>
\begin{tabular}{|l|ll|l|l|}
\hline & Step & \multicolumn{2}{|l|}{ Instruction } & OP1 \\
\hline & OP2 \\
\hline 0 & LOAD & \(\times 00000\) & \\
1 & AND & \(\times 00001\) & \\
2 & LOAD & \(\times 00002\) & \\
3 & AND & \(\times 00003\) & \\
4 & ORL & & \\
5 & OUT & Y00000 & \\
6 & END & & \\
\hline
\end{tabular}

Executes the OR operation between the block and the block.

[Note]
- You cannot add as device input in ladder.
- Input for instruction is available only for mnemonic.
<Time chart>


\subsection*{3.1.16 Output instruction(OUT)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Output instruction} & OUT D & \multicolumn{5}{|l|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{3}{*}{\[
\begin{array}{|l}
\hline \mathrm{M} \\
\text { 윽 }
\end{array}
\]} & \multirow{3}{*}{\[
\frac{0}{0}
\]} & \multirow[b]{3}{*}{边} & \multirow[b]{3}{*}{\begin{tabular}{|l|}
\hline 0 \\
O \\
On \\
¢ \\
\hline
\end{tabular}} & \multirow{3}{*}{甡} \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{BIT} & Y, F, S, M, UB & & & & & \\
\hline & & ON/OFF contact of device & & & & & \\
\hline & & Not applicable & & & & & 1 \\
\hline
\end{tabular}

\section*{<Ladder>}


Outputs the operation result executed to the OUT instruction to the (S) device.
<Time chart>


\subsection*{3.1.17 Output instruction(OUT Syyy.xx)}

<Ladder>


Step device
yyy: Group number(0 to 255)
xx: Step number(0 to 99)
1. Unlikely the Sequential Control(Set Syyy.xx) Instructions, if input condition turns ON, the corresponding step becomes ON regardless of the step order.
2. Although a number of input condition contacts become ON in the same group, the last programmed contact is output firstly.
3. Even if the input condition turns OFF, the step number retains ON.
4. In order to clear the OUT Syyy.xx instruction, the input contact of Syyy. 00 should become ON.
<Time chart>


\subsection*{3.1.18 Output instruction(OUTP)}

<Ladder>


When the operation result executed to the OUTP turns OFF from ON, the output contact becomes ON for only one scan and then becomes OFF for any other cases.
<Time chart>


\subsection*{3.1.19 Output instruction(OUTF)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Output instruction} & OUTF D & \multicolumn{5}{|l|}{Applicable model LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{3}{*}{\[
\begin{aligned}
& \text { m } \\
& \text { 응 }
\end{aligned}
\]} & \multirow{3}{*}{\[
\begin{array}{|l}
\hline N \\
\hline \mathbf{N} \\
\hline
\end{array}
\]} & \multirow[b]{3}{*}{\[
\begin{array}{|l}
\hline \stackrel{0}{\gtrless} \\
\gtrless
\end{array}
\]} & \multirow[b]{3}{*}{\begin{tabular}{|l|}
\hline O \\
O \\
O \\
§ \\
\hline
\end{tabular}} & \multirow{3}{*}{呂} \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{BIT} & Y, F, S, M, UB & & & & & \\
\hline & & Contact to be ON for one scan on the falling edge of a pulse & & & & & \\
\hline & & Not applicable & & & & & 2 \\
\hline
\end{tabular}

\section*{<Ladder>}


When the operation result executed to the OUTF turns OFF from ON, the output contact becomes ON for only one scan and then becomes OFF for any other cases.
<Time chart>


\subsection*{3.1.20 Output instruction(SET)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Output instruction} & SET D & \multicolumn{5}{|r|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{3}{*}{\[
\begin{array}{|c}
\mathbf{M} \\
\text { 웅 }
\end{array}
\]} & \multicolumn{3}{|l|}{\multirow[b]{3}{*}{}} & \multirow{3}{*}{鯜} \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{BIT} & Y, F, S, T, C, M, UB & & & & & \\
\hline & & Contact to be maintained ON status & & & & & \\
\hline & & Not applicable & & & & & 1 \\
\hline
\end{tabular}

\section*{<Ladder>}

1. Once the contact is SET, even if the input condition turns OFF, it retains SET status.
2. In order to turn OFF the contact, you should execute
the RST instruction

\section*{<Time chart>}


\subsection*{3.1.21 Output instruction(SET Syyy.xx)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Output instruction} & SET Syyy.xx & D & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available dev & / Description / Range & \multirow{3}{*}{\[
\]} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{}} & \multirow[b]{3}{*}{} & \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{BIT} & S & & & & & & \(\stackrel{\text { O }}{\substack{0}}\) \\
\hline & & yyy is group nu & ber(0 to 255), xx is step number (0 to 99) & & & & & \\
\hline & & Not applicable & & & & & & 1 \\
\hline
\end{tabular}
<Ladder>


Step device
yyy: Group number(0 to 255)
xx: Step number(0 to 99)
1. If the input contact of current step number is ON while the previous step number is retaining ON status, the current step number turns ON and the previous step number turns OFF.
2. Even if the input contact turns OFF, S device at ON status still retains ON.
3. Syyy. 00 is always ON status when starting the program.
4. In order to reset the Syyy.xx instruction, the input contact of Syyy. 00 should become ON.
<Time chart>


\subsection*{3.1.22 Output instruction(RST)}

<Ladder>

1. If the input condition turns ON , the corresponding contact becomes OFF.
2. Even if the input condition turns OFF, the corresponding contact still retains OFF.
<Time chart>


\subsection*{3.1.23 Reversal instruction(ALT)}

<Ladder>


Whenever the input condition turns ON from OFF, the output is reversed according to this, and this event is consecutively executed every operation cycle.
<Time chart>


\subsection*{3.1.24 Reversal instruction(NOT)}


\section*{<Ladder>}

1. Transfers input by reversing.
2. A contact circuit is reversed as B contact circuit, B contact circuit is reversed as A contact circuit.
<Time chart>


\subsection*{3.1.25 Stack instruction(MPUSH)}
\begin{tabular}{|cc|}
\hline \begin{tabular}{c} 
Stack \\
instruction
\end{tabular} & \begin{tabular}{c} 
MPplicable model \\
LP-S044, LP-S070
\end{tabular} \\
\hline
\end{tabular}

The operation results executed to current are stored in the stack.

\subsection*{3.1.26 Stack instruction(MLOAD)}
Stack
instruction MLOAD
Applicable model
LP-S044, LP-S070

Loads the value stored in the stack.

\subsection*{3.1.27 Stack instruction(MPOP)}
```

\#$$
\begin{array}{c}{\mathrm{ Stack }}\\{\mathrm{ instruction MPOP }}\end{array}
$$

```

Removes the data in the stack after reading it.

\subsection*{3.1.28 Exit instruction(END)}
\begin{tabular}{|cc|}
\hline \begin{tabular}{c} 
Exit \\
instruction
\end{tabular} END & Applicable model \\
& LP-S044, LP-S070 \\
\hline
\end{tabular}

Exits the program.

\subsection*{3.2 Application instruction}

\subsection*{3.2.1 Counter instruction(CTU)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Counter instruction} & CTU S N & \multicolumn{4}{|l|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & \multirow[t]{4}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & \multirow[b]{3}{*}{\[
\begin{array}{|l}
\hline \frac{\mathbb{O}}{\mathbb{D}} \\
\hline \mathbf{O}
\end{array}
\]} \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{WORD} & C, UW & & & & \\
\hline & & Counter contact you want to use & & & & \\
\hline & & 0(h0000) to 65535(hFFFF) & & & & 5 \\
\hline \multirow{3}{*}{N} & \multirow{3}{*}{WORD} & X, Y, M, S, T, C, D, Z, F, UW, integer & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Setting value of counter & & & & \\
\hline & & O(h0000) to 65535(hFFFF) & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. If the pulse signal is applied to the input rung when the reset signal is OFF, the word value of S device is increased one by one, and then when it reaches the setting value N , the corresponding counter contact turns ON.
2. If the reset signal turns ON , the word value of S device becomes 0 .
<Time chart>


\subsection*{3.2.2 Counter instruction(CTD)}


\section*{<Ladder>}

1. If the pulse signal is applied to the input rung when the reset signal is OFF, the word value of \(S\) device is decreased one by one, and then when it reaches 0 , the corresponding counter contact turns ON.
2. If the reset signal is ON , the word value of S device becomes the setting value " N ".
<Time chart>


\subsection*{3.2.3 Counter instruction(CTUD)}


\section*{<Ladder>}

1. If the count-up pulse is applied to the input rung when the reset signal is OFF, the the word value of S device is increased one by one. Likewise, if the count-down pulse is applied to the input rung, the word value of \(S\) device is decreased one by one.
2. If the word value of \(S\) device is greater than the setting value " N ", the corresponding counter contact turns ON, and if the word value of S device is less than the setting value " N ", the corresponding counter contact turns OFF.
3. If the reset signal is ON , the word value of \(S\) device becomes 0 .
<Time chart>


\subsection*{3.2.4 Counter instruction(CTR)}


\section*{<Ladder>}

1. If the pulse signal is applied to the input rung when the reset signal is OFF, the word value of \(S\) device is increased one by one, and then when it reaches 0 , the corresponding counter contact turns ON.
2. If the pulse is continuously being input even after the reset signal is ON, the word value of \(S\) device is restarted at 0 again and the corresponding counter contact becomes OFF.
3. Even if the reset signal turns ON, the word value of \(S\) device becomes 0 .
<Time chart>


\subsection*{3.2.5 Timer instruction(TON)}


\section*{<Ladder>}

1. As soon as the input condition is \(O N, S\) device value of the timer is increased one by one and then when it reaches the setting value " N ", the corresponding timer contact turns ON.
2. If the input condition becomes OFF or encounters RSTxxx instruction, the corresponding timer contact turns OFF and the current value becomes 0 .
<Time chart>


\subsection*{3.2.6 Timer instruction(TOFF)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Timer instruction} & TOFF & S & N & \multicolumn{5}{|l|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Availab & / D & p & \multirow{3}{*}{\[
\begin{array}{|l}
\hline \mathrm{M} \\
\text { 웅 }
\end{array}
\]} & \multirow{3}{*}{\[
\begin{aligned}
& \mathbb{N} \\
& \substack{\mathbb{N} \\
0 \\
0}
\end{aligned}
\]} & \multirow{3}{*}{\(\stackrel{9}{3}\)} & \multirow[b]{3}{*}{O
O
Ó
§} & \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{WORD} & T, UW & & & & & & & \multirow[t]{2}{*}{呂} \\
\hline & & Timer & wa & use & & & & & \\
\hline & & O(h0000) & 5(hF & & & & & & 5 \\
\hline \multirow{3}{*}{N} & \multirow{3}{*}{WORD} & X, Y, M & D, Z, & UW, & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Setting & mer & & & & & & \\
\hline & & O(h0000) & 5(hF & & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. As soon as the input condition is \(O N, S\) device value of the timer is changed into the setting value " N " and the corresponding timer contact becomes ON.
2. If the input condition becomes OFF, the current value of the timer is decreased one by one and when it reaches " 0 ", the corresponding timer contact becomes OFF.
3. If it encounters RST Txxxx instruction, the corresponding timer contact turns OFF and the setting value becomes " 0 ".
<Time chart>


\subsection*{3.2.7 Timer instruction(TMR)}


\section*{<Ladder>}

1. When the input signal is \(O N\), the \(S\) device value of the timer is increased. And when the input signal is OFF, even if its value does not reach the setting value " N ", it retains the current status of its value, and when the input signal is ON again it is increased from that value.
2. When the \(S\) device value reaches the setting value " N ", the corresponding timer contact turns ON. If it encounters RST Txxxx instruction, the corresponding timer contact turns OFF and the \(S\) device value becomes " 0 ".
<Time chart>


\subsection*{3.2.8 Timer instruction(TMON)}

<Ladder>

1. As soon as the input condition is ON , the corresponding timer contact turns ON, and the S device value of the timer is changed into the setting value " N " then it is decreasing.
2. Although the input condition is changed into ON/OFF in the middle of the execution, the timer is continuously operating, and when \(S\) device value of the timer reaches " 0 ", the timer contact is to be OFF.
3. When it encounters RSTxxx instruction, the corresponding timer contact will be OFF and the \(S\) device value of the timer will be " 0 ". .

\section*{<Time chart>}


\subsection*{3.2.9 Timer instruction(TRTG)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Timer instruction} & \multirow[t]{2}{*}{TRTG} & S & N & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & & / D & & \multirow{3}{*}{\[
\begin{array}{|c}
\hline \text { m } \\
\text { on }
\end{array}
\]} & \multirow{3}{*}{\[
\begin{array}{|l}
\hline \mathbf{N} \\
\mathbf{N} \\
\mathbf{O}
\end{array}
\]} & \multirow{3}{*}{年} & \multirow[b]{3}{*}{\begin{tabular}{l} 
O \\
O \\
O \\
§ \\
\hline
\end{tabular}} & \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{WORD} & T, UW & & & & & & & \multirow[t]{2}{*}{魣} \\
\hline & & Timer con & wan & use & & & & & \\
\hline & & 0(h0000) & 5(hF & & & & & & 5 \\
\hline \multirow{3}{*}{N} & \multirow{3}{*}{WORD} & X, Y, M & D, Z, & UW, & & & & & \\
\hline & & Setting & imer & & & & & & \\
\hline & & 0(h0000) & 5(hF & & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. As soon as the input condition is ON , the corresponding timer contact turns ON and the \(S\) device value is changed into the setting value " N " then it is decreasing.
2. If the input condition turns OFF in the middle of the execution and then becomes \(O N\), the \(S\) device value is
changed into the setting value " N " again then it will be decreasing.
3. If it encounters the RST instruction, the corresponding timer contact turns OFF and the \(S\) device value is changed into " 0 ".

\section*{<Time chart>}


\subsection*{3.2.10 Control instruction(JMP)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Control instruction} & JMP LABEL & \multicolumn{5}{|r|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{3}{*}{\[
\begin{array}{|l|}
\hline \mathbf{M} \\
\text { O}
\end{array}
\]} & \multirow{3}{*}{\[
\begin{array}{|l}
\hline \mathbf{N} \\
\mathbf{N} \\
0
\end{array}
\]} & \multirow[b]{3}{*}{\[
\]} & \multirow[b]{3}{*}{} & \multirow{3}{*}{(1)} \\
\hline \multirow{3}{*}{LABEL} & \multirow[t]{3}{*}{STRING} & LABEL name & & & & & \\
\hline & & Label for the place to jump & & & & & \\
\hline & & STRING & \(\bigcirc\) & & & & 3 \\
\hline
\end{tabular}
<Ladder>

1. Jump to the place where the LABEL is matched.
2. When executing the JMP instruction, it does not process the instructions between JMP to LABEL. 3. If the LABEL does not exist, error flag occurs.


\subsection*{3.2.11 Control instruction(LABEL)}


\section*{<Ladder>}


\subsection*{3.2.12 Control instruction(FCALL)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Control instruction} & FCALL LABEL & \multicolumn{5}{|l|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{3}{*}{\[
\begin{array}{|l}
\hline \frac{\mathrm{m}}{\mathrm{O}} \\
\text { O}
\end{array}
\]} & \multirow{3}{*}{N} & \multirow{3}{*}{会} & \multirow[b]{3}{*}{\begin{tabular}{|l|}
\hline 0 \\
0 \\
\hline 0 \\
O
\end{tabular}} & \\
\hline \multirow{3}{*}{LABEL} & \multirow[t]{3}{*}{STRING} & LABEL name & & & & & \multirow[t]{2}{*}{-} \\
\hline & & Label for the function to call & & & & & \\
\hline & & STRING & 0 & & & & 3 \\
\hline
\end{tabular}
<Ladder>
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ M00000 } \\
\hline
\end{tabular}
1. Calls the registered user defined function.
2. If you call an unused function, error flag occurs. 3. When you input the instruction statement, the number of operands should be matched.

\section*{3．2．13 Control instruction（FUNC）}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Control instruction} & FUNC LABEL & \multicolumn{4}{|l|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available device／Description／Range & \multirow{3}{*}{} & \multirow[b]{3}{*}{年} & \multirow[b]{3}{*}{\begin{tabular}{|l|}
\hline \(0 ⿴ 囗 ⿰ 丨 丨 ⿹ 勹\)
\end{tabular}} & \\
\hline \multirow{3}{*}{LABEL} & \multirow[t]{3}{*}{STRING} & LABEL name & & & & \multirow[t]{2}{*}{} \\
\hline & & Lable for the starting position of the function & & & & \\
\hline & & STRING & & & & 3 \\
\hline
\end{tabular}

\section*{＜Ladder＞}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{mooooo} & & & \multirow[t]{2}{*}{FCALL} & \multirow[t]{2}{*}{F＿MOV} & \multirow[t]{2}{*}{M00000} & \multirow[t]{2}{*}{D0000} & D0001 \\
\hline & & & & & & & END \\
\hline FUNC & F＿MOV & V00000 & V0001 & V0002 & & & \\
\hline \[
\begin{array}{r}
\text { V00000 } \\
-1
\end{array}
\] & & & & & MOV & V0001 & V0002 \\
\hline & & & & & & & RET \\
\hline
\end{tabular}

1．Represents the starting position of the user defined function．
2．It should be located behind the END sentence．
3．The virtual function device＂ V ＂is being used．
4．The RET sentence should be located in the last part of the FUNC statement．

\subsection*{3.2.14 Branch instruction(CALL)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Branch instruction} & CALL LABEL & \multicolumn{5}{|l|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & & & & & \\
\hline \multirow{3}{*}{LABEL} & \multirow{3}{*}{STRING} & LABEL name & \multirow[t]{2}{*}{\[
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline \mathbf{N} \\
\mathbf{N} \\
\hline
\end{array}
\]} & \multirow[t]{2}{*}{\[
\]} & \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline 0 \\
0 \\
0 \\
0 \\
¢
\end{tabular}} & \multirow[t]{2}{*}{(l) \begin{tabular}{l} 
O \\
\hline 0 \\
\hline
\end{tabular}} \\
\hline & & Label for the function to call & & & & & \\
\hline & & STRING & & & & & 3 \\
\hline
\end{tabular}
<Ladder>

1. Calls the subroutine, such as "LABLE" name. (Executing the program between the SUBRT LABEL to RET instructions)
2. CALL LABEL can be used in duplicating, and the program between SUBRT LABEL to RET instructions should be located hehind the END instruction.


\subsection*{3.2.15 Branch instruction(SUBRT)}

<Ladder>

1. Displays the starting point of the CALL subroutine. 2. It should be located hehind END and can not be used in duplicate.(For CALL statement, it is able to be used in duplicate)

\subsection*{3.2.16 Branch instruction(RET)}
```

Branch
instruction RET
Applicable model
LP-S044, LP-S070

```

Exits the subroutine

\subsection*{3.2.17 Loop instruction(FOR)}


\section*{<Ladder>}

1. Sets the number of repetitions for the program with the NEXT instruction.
2. The program is repeated N times until encountering the NEXT.
3. The range for the number of repetitions is from 0 to 65535.
[Note]
The scan time can be longer than you expected therefore please use the WDT instruction in order not to exceed the setting value.


\subsection*{3.2.18 Loop instruction(NEXT)}
\begin{tabular}{|cc|}
\hline \begin{tabular}{c} 
Loop \\
instruction
\end{tabular} NEXT & Applicable model \\
& LP-S044, LP-S070 \\
\hline
\end{tabular}

The program is repeated from the FOR instruction to the NEXT instruction.

\subsection*{3.2.19 Loop instruction(BREAK)}
```

 Loop
 instruction BREAK
Applicable model
LP-S044, LP-S070

```

Repeat operation is executed with FOR, NEXT instruction. With BREAK instruction the repeated operation stops even though repeated execution is not complete.

\subsection*{3.2.20 Master control instruction(MCS)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{control instruction} & \multicolumn{2}{|l|}{MCS N} & \multicolumn{5}{|c|}{Applicable model} \\
\hline OP & DATA type & Availa & / & \multicolumn{5}{|l|}{LP-S044, LP-S070} \\
\hline \multirow{3}{*}{N} & \multirow[t]{3}{*}{Invariable number} & Integer & & \multirow[t]{2}{*}{¢} & \multirow[t]{2}{*}{N} & \multirow[t]{2}{*}{通} & \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline 0 \\
O \\
O \\
¢ \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{呂} \\
\hline & & MCS nu & to 7) & & & & & \\
\hline & & 0 to 7 & & (0) & & & & 2 \\
\hline
\end{tabular}

\section*{<Ladder>}

1. If the input condition of MCS is ON , the program is executed to the MCR instruction which has the same number of MCS. And if the input condition turns OFF, the program does not execute the instruction.
2. MCS number " 0 " has the highest priority and MCS number " 15 " has the lowest priority, therefore you should use them in order of priority, and should clear them in reverse order.
3. When you execute the MCR instruction, if you clear the higher priority the MCS block, which has the lower priority, is cleared too.
4. MCS or MCR instruction should be used in order of its priority.


\subsection*{3.2.21 Master control instruction(MCR)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Master control instruction} & \multicolumn{2}{|l|}{MCR N} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}}} \\
\hline OP & DATA type & Availa & / D & \multirow{3}{*}{\[
\]} & & & & \\
\hline \multirow{3}{*}{N} & \multirow{3}{*}{Invariable number} & Integer & & & \[
\begin{aligned}
& \text { N } \\
& \text { O }
\end{aligned}
\] & O & O & \(\stackrel{0}{0}\) \\
\hline & & MCR n & & & & & \(\stackrel{1}{\circ}\) & \\
\hline & & 0 to 7 & & & & & & 2 \\
\hline
\end{tabular}
<Ladder>
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{X00000} \\
\hline & MCS & 0 \\
\hline & MCR & 0 \\
\hline
\end{tabular}

Master control reset
Clears the registered master control by using the MCS instruction.

\subsection*{3.2.22 Interrupt instruction(EI)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Interrupt instruction} & EI & \multicolumn{5}{|r|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline \multirow[t]{3}{*}{OP} & DATA type & Available device / Description / Range & \multirow{3}{*}{\[
\begin{array}{|l}
\hline \mathbf{W} \\
\mathbf{0} \\
\hline
\end{array}
\]} & & & & \\
\hline & & Not applicable & & \[
\begin{array}{|c|}
\hline N \\
\frac{\mathbb{D}}{\mathbf{O}}
\end{array}
\] & O & O & O \\
\hline & & & & & & & 1 \\
\hline
\end{tabular}

\section*{<Ladder>}


Enable Interrupt
1. Enables all interrupts.
2. Enables the entire time interrupts and external interrupts.
3. In order to use the individual interrupt, you should use ETI and EEI instructions.

\subsection*{3.2.23 Interrupt instruction(DI)}


\section*{<Ladder>}


Disable Interrupt
1. Disables all interrupts.
2. Disables the entire time interrupts and external interrupts.
3. In order to disable the individual interrupt, you should use the DTI and DEI instructions.

\subsection*{3.2.24 Interrupt instruction(ETI)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Interrupt instruction} & ETI & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & & & & & \\
\hline & & Integer & \[
\frac{\mathrm{m}}{7}
\] & \[
\] & \(\stackrel{\text { O}}{3}\) & 일 & ¢ \\
\hline & & 0 to 7 & & & & & 1 \\
\hline
\end{tabular}

\section*{<Ladder>}


Enable Time Interrupt
1. Enables the individual time interrupt.
2. In order to use ETI, you should activate all interrupts by using El instruction first.
3. Structure of the instructions

ETI Time Interrupt Number(0 to 7)

\subsection*{3.2.25 Interrupt instruction(EEI)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Interrupt instruction} & EEI & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & & & & & \\
\hline & & Integer & \[
\begin{array}{|l|}
\hline \frac{\mathrm{T}}{3}
\end{array}
\] & \[
\begin{array}{|l|}
\hline N \\
\mathbb{N} \\
\hline
\end{array}
\] & \(\stackrel{0}{01}\) & O & ¢ \\
\hline & & 0 to 15 & & & & & 1 \\
\hline
\end{tabular}

\section*{<Ladder>}

1. Enables the individual external interrupt.
2. In order to use the EEI, you should activate all interrupts by using El instruction first.
3. Structure of the instructions

EEI External Interrupt Number(0 to 15)

\subsection*{3.2.26 Interrupt instruction(DTI)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Interrupt instruction} & DTI & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multirow[b]{2}{*}{\[
\begin{array}{|l}
\hline \mathrm{T} \\
\text { on }
\end{array}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \hline \mathbf{N} \\
& \frac{\mathbb{D}}{}
\end{aligned}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{魣} \\
\hline & \multirow[t]{2}{*}{Invariable number} & Integer & & & & & \\
\hline & & 0 to 7 & & & & & 1 \\
\hline
\end{tabular}

\section*{<Ladder>}


Disable Time Interrupt
1. Disables the individual time interrupt.
2. Structure of the instructions

DTI Time Interrupt Number(0 to 7)

\subsection*{3.2.27 Interrupt instruction(DEI)}


\section*{<Ladder>}


Disable External Interrupt
1. Disables the individual external interrupt.
2. Structure of the instructions

DEI External Interrupt Number(0 to 15)

\subsection*{3.2.28 Interrupt instruction(TINT)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Interrupt instruction} & TINT & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multirow[b]{2}{*}{\[
\begin{array}{|l}
\hline \mathrm{M} \\
\text { 욱 }
\end{array}
\]} & \multirow[b]{2}{*}{\[
\begin{array}{|l}
\hline \mathbf{N} \\
\frac{\mathbb{O}}{0}
\end{array}
\]} & \multirow[b]{2}{*}{\[
\frac{\stackrel{N}{2}}{2}
\]} & \multirow[b]{2}{*}{品} & \\
\hline & \multirow[t]{2}{*}{Invariable number} & Integer & & & & & O \\
\hline & & 0 to 7 & & & & & 1 \\
\hline
\end{tabular}

\section*{<Ladder>}


Time Interrupt
1. Represnts the starting point of the time interrupt block.
2. In order to indicate the end of block, you should use the IRET instruction at the end of TINT block.
3. Structure of the instructions

TINT Time Interrupt Number(0 to 7)
Example) \begin{tabular}{l} 
As soon as the input contact of \\
ETI 0 is ON, TINTO to IRET Ioop \\
runs. \\
When the input contact of DTI 0 \\
is ON, TINTO to IRET Ioop \\
stops.
\end{tabular}

\subsection*{3.2.29 Interrupt instruction(EINT)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Interrupt instruction} & EINT & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multirow[b]{2}{*}{} & \multirow{3}{*}{\[
\begin{array}{|l}
\hline \mathbf{N} \\
\mathbf{N} \\
\mathbf{O}
\end{array}
\]} & \multirow{3}{*}{} & \multirow[b]{2}{*}{O
O
O
¢
¢} & \multirow[b]{2}{*}{\begin{tabular}{|l|}
\hline\(\frac{0}{D}\) \\
\hline 8 \\
\hline
\end{tabular}} \\
\hline & \multirow{2}{*}{Invariable number} & Integer & & & & & \\
\hline & & 0 to 15 & & & & & 1 \\
\hline
\end{tabular}

\section*{<Ladder>}


\section*{External Interrupt}
1. Represent the starting point of the external interrupt block.
2. In order to indicate the end of block, you should use the IRET instruction at the end of EINT block.
3. Structure of the instructions

EINT External Interrupt Number(0 to 15)

\subsection*{3.2.30 Interrupt instruction(IRET)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Interrupt instruction} & IRET & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & \multicolumn{2}{|l|}{DATA type Available device / Description / Range} & \multirow[b]{2}{*}{} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{}} & \multirow[b]{2}{*}{\begin{tabular}{|l|}
\hline\(\frac{0}{1}\) \\
\hline 8
\end{tabular}} \\
\hline & & & & & & & \\
\hline & & & & & & & 1 \\
\hline
\end{tabular}

\section*{<Ladder>}


Interrupt Return
1. Represents the end of time interrupt and external interrupt blocks.
2. As below, it is generally being used with TINT or EINT instruction as a pair.
TINT to IRET
EINT to IRET

\subsection*{3.2.31 Watchdog timer(WDT)}


\section*{<Ladder>}

1. Resets watch dog timer during the program operation.
2. When the operation time from 0 step to END is over than max. watch dog setting time, program operation stops and WDT instruction should be used. 3. Watch dog setting value is able to change by special device.
4. When resupply power, watch dog setting value is reset as 200 ms .

\subsection*{3.2.32 Input comparison instruction(LOAD=)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{comparison instruction} & LOAD = & S1 & S2 & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available d & / De & iption / Ra & & & & & \\
\hline & & X, Y, F, Z, T, & S, L, & UW, integer & T & \(\stackrel{N}{\text { N }}\) & O & - & \(\xrightarrow{0}\) \\
\hline S1 & INT & Data or addr & com & re with S2 & & & & § & \\
\hline & & -32768(h8000) & 3276 & 7FFF) & & & & & 5 \\
\hline & & X, Y, F, Z, T, & S, L, & UW, integer & & & & & \\
\hline S2 & INT & Data or addr & com & re with S1 & & & & & \\
\hline & & -32768(h8000) & 3276 & 7FFF) & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. Compares the word value of S1 with that of S2, and if they are equal it turns ON.
2. If the word values of S1 and S2 are not equal, it turns OFF.
3. Executes the Signed comparison.
(h8000(-32768) to hFFFF(-1) < 0 to h7FFF(32767))


\subsection*{3.2.33 Input comparison instruction(LOAD>)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{comparison instruction} & \multirow[t]{2}{*}{LOAD> S1 S2} & \multicolumn{5}{|c|}{Applicable model} \\
\hline & & & \multicolumn{5}{|r|}{LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{4}{*}{\[
\begin{aligned}
& \mathrm{m} \\
& \mathbf{M} \\
& \text { O}
\end{aligned}
\]} & & & & \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{INT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \mathbf{N} \\
& \mathbf{O}
\end{aligned}
\]} & \multirow[t]{2}{*}{通} & \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline O \\
O \\
O \\
O \\
¢
\end{tabular}} & \multirow[t]{2}{*}{管} \\
\hline & & Data or address to compare with S2 & & & & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{INT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Data or address to compare with S1 & & & & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. If the word value of \(S 1\) is greater than that of \(S 2\), it turns ON.
2. If the word value of \(S 1\) is less than or equal to that of S2, it turns OFF.
3. Execute the Signed comparison.
(h8000(-32768) to hFFFF(-1) < 0 to h7FFF(32767))


\subsection*{3.2.34 Input comparison instruction(LOAD<)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{comparison instruction} & LOAD< & S1 & S2 & \multicolumn{5}{|l|}{Applicable model} \\
\hline OP & DATA type & Available d & / De & ription / Ra & \multirow{4}{*}{\[
\begin{array}{|l|l|}
\hline \mathbf{M} \\
\text { on }
\end{array}
\]} & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{}} & \multirow[b]{3}{*}{(1)} \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{INT} & X, Y, F, Z, T, & S, L & UW, integer & & & & & \\
\hline & & Data or addr & com & re with S2 & & & & & \\
\hline & & -32768(h8000) & 3276 & 7FFF) & & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{INT} & X, Y, F, Z, T, & S, L & UW, integer & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Data or addr & com & re with S1 & & & & & \\
\hline & & -32768(h8000) & 3276 & 7FFF) & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. If the world value of \(S 1\) is less than that of \(S 2\), it turns ON.
2. If the word value of S 1 is greater than or equal to that of S2, it turns OFF.
3. Executes the Signed comparision.
(h8000(-32768) to hFFFF(-1) < 0 to hFFFF(32767))


\subsection*{3.2.35 Input comparison instruction(LOAD<>)}


\section*{<Ladder>}

1. If the word values of S 1 and S 2 are not equal, it turns ON.
2. If the word values of S1 and S2 are equal, it turns OFF.
3. Executes the Signed comparision.
(h8000(-32768) to hFFFF(-1) < 0 to h7FFF(32767))


\subsection*{3.2.36 Input comparison instruction(LOAD>=)}


\section*{<Ladder>}

1. If the word value of \(S 1\) is less than or equal to that of
S2, it turns ON.
2. If the word value of \(S 1\) is greater than that of \(S 2\), it turns OFF.
3. Executes the Signed comparision.
(h8000(-32768) to hFFFF(-1) < 0 to h7FFF(32767))


\subsection*{3.2.37 Input comparison instruction(LOAD<=)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Input comparison instruction} & LOAD<= S1 S2 & \multicolumn{5}{|r|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{4}{*}{} & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{}} & \\
\hline \multirow{3}{*}{S1} & \multirow[t]{3}{*}{INT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & & & & \multirow[t]{2}{*}{} \\
\hline & & Data or address to compare with S2 & & & & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{INT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & & & & \\
\hline & & Data or address to compare with S1 & & & & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. If the word value of S 1 is less than or equal to that of
S2, it turns ON.
2. If the word value of \(S 1\) is greater than that of S 2 , it turns OFF.
3. Executes the Signed comparision.
(h8000(-32768) to hFFFF(-1) < 0 to h7FFF(32767))


\subsection*{3.2.38 Input comparison instruction(DLOAD=)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{comparison instruction} & DLOAD= & S1 & S2 & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044 LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available dev & / De & ription / R & & & & & \\
\hline & & X, Y, F, Z, T, C & S, L, & UW, integ & \[
\begin{array}{|l|}
\hline \frac{\mathrm{m}}{\mathbf{0}} \\
\hline
\end{array}
\] & N & @ & 익 & O \\
\hline S1 & DINT & Data or addres & com & re with S2 & & & & \(\stackrel{1}{2}\) & \\
\hline & & -2147483648(h & 000000) & to 214748 & & & & & 5 \\
\hline & & X, Y, F, Z, T, C & S, L, & UW, integ & & & & & \\
\hline S2 & DINT & Data or addres & com & re with S1 & & & & & \\
\hline & & -2147483648(h & 0000 & to 214748 & & & & & \\
\hline
\end{tabular}
<Ladder>

1. If the double word values of S1 and S2 are equal, it turns ON.
2. If the double word values of S1 and S2 are not equal, it turns OFF.
3. Executes the Signed comparision.
(h80000000(-2147483648) to hFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))


\subsection*{3.2.39 Input comparison instruction(DLOAD>)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{comparison instruction} & DLOAD> S1 S2 & \multicolumn{5}{|l|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{4}{*}{\[
\begin{array}{|l}
\hline \mathrm{M} \\
\mathrm{O} \\
\hline
\end{array}
\]} & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{}} & \multirow[b]{3}{*}{-} \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{DINT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & & & & \\
\hline & & Data or address to compare with S2 & & & & & \\
\hline & & -2147483648(h80000000) to 2147483647(hFFFFFFFF) & & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{DINT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & & & & \\
\hline & & Data or address to compare with S1 & & & & & \\
\hline & & -2147483648(h80000000) to 2147483647(hFFFFFFFF) & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. If the double word value of S 1 is greater than that of S2, it turns ON.
2. If the double word value of S 1 is less than or equal to that of S2, it turns OFF.
3. Executes the Signed comparision.
(h80000000(-2147483648) to hFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))


\subsection*{3.2.40 Input comparison instruction(DLOAD<)}


\section*{<Ladder>}

1. If the double word value of S 1 is less than that of S2, it turns ON.
2. If the double word value of S1 is greater than that of

S2, it turns OFF.
3. Executes the Signed comparision. (h80000000(-2147483648) to hFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))


\subsection*{3.2.41 Input comparison instruction(DLOAD<>)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{comparison instruction} & DLOAD<> S1 S2 & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multicolumn{5}{|l|}{LP-S044, LP-S070} \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{DINT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multirow[t]{3}{*}{\[
\begin{array}{|l|}
\hline \mathbf{M} \\
\text { O} \\
\hline
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{|l}
\hline \mathbb{N} \\
\mathbf{N}
\end{array}
\]} & \multirow[t]{2}{*}{令} & \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline 0 O \\
O \\
O \\
O \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{(\%} \\
\hline & & Data or address to compare with S2 & & & & & \\
\hline & & -2147483648(h80000000) to 2147483647(hFFFFFFFF) & & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{DINT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Data or address to compare with S1 & & & & & \\
\hline & & -2147483648(h80000000) to 2147483647(hFFFFFFFF) & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. If the double word values of S1 and S2 are not equal, it turns ON.
2. If the double word value of S1 and S2 are equal, it turns OFF.
3. Executes the Signed comparision.
(h80000000(-2147483648) to hFFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))


\subsection*{3.2.42 Input comparison instruction(DLOAD>=)}


\section*{<Ladder>}

1. If the double word value of S1 is greater than or equal to that of S 2 , it turns ON .
2. If the double word value of S 1 is less than that of S2, it turns OFF.
3. Executes the Signed comparision. (h80000000(-2147483648) to hFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))


\subsection*{3.2.43 Input comparison instruction(DLOAD<=)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Input comparison instruction} & DLOAD<= S1 S2 & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multicolumn{5}{|l|}{LP-S044, LP-S070} \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{DINT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{m} \\
& \mathrm{O} \\
& \mathrm{O}
\end{aligned}
\]} & \multirow[t]{2}{*}{\(\stackrel{\text { N }}{\text { N }}\)} & \multirow[t]{2}{*}{会} & \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline 0 \\
O \\
O \\
O \\
¢
\end{tabular}} & \multirow[t]{2}{*}{} \\
\hline & & Data or address to compare with S2 & & & & & \\
\hline & & -2147483648(h80000000) to 2147483647(hFFFFFFFF) & & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{DINT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Data or address to compare with S1 & & & & & \\
\hline & & -2147483648(h80000000) to 2147483647(hFFFFFFFF) & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. If the double word value of S1 is less than or equal to that of S 2 , it turns ON .
2. If the double word value of S1 is greater than that of S2, it turns OFF.
3. Executes the Signed comparision.
(h80000000(-2147483648) to hFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))


\subsection*{3.2.44 Input comparison instruction(AND=)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Input comparison instruction} & AND= S1 S2 & \multicolumn{4}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multicolumn{4}{|l|}{} \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{INT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{会} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{鱼} \\
\hline & & Data or address to compare with S2 & & & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{INT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Data or address to compare with S1 & & & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. If the word values of S1 and S2 are equal, it turns ON.
2. If the word values of S1 and S2 are not equal, it turns OFF.
3. Executes the Signed comparision.
(h8000(-32768) to hFFFF(-1) < 0 to h7FFF(32767))
\begin{tabular}{|c|c|c|}
\hline Instruction & Condition & Comparision result \\
\hline AND \(=\) & \(\mathbf{S 1}=\mathbf{S 2}\) & ON \\
\hline
\end{tabular}

\section*{3．2．45 Input comparison instruction（AND＞）}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Input } \\
\text { comparison } \\
\text { instruction }
\end{gathered}
\]} & \multirow[t]{2}{*}{AND＞} & \multirow[t]{2}{*}{S1} & \multirow[t]{2}{*}{S2} & \multicolumn{5}{|c|}{Applicable model} \\
\hline & & & & & \multicolumn{5}{|l|}{LP－S044，LP－S070} \\
\hline OP & DATA type & Available & ／D & ription／Ra & \multirow{3}{*}{\[
\begin{array}{|l|}
\hline \mathrm{m} \\
\text { O} \\
\text { On }
\end{array}
\]} & \multirow{3}{*}{\[
\begin{array}{|l}
\hline N \\
\mathbb{N} \\
\mathbf{O}
\end{array}
\]} & \multirow{3}{*}{令} & & \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{INT} & X，Y，F，Z，T & S，L & UW，integer & & & & \multirow[t]{2}{*}{詈} & \multirow[t]{2}{*}{魣} \\
\hline & & Data or add & com & re with S2 & & & & & \\
\hline & & －32768（h80 & 3276 & 7FFF） & \multicolumn{5}{|r|}{5} \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{INT} & X，Y，F，Z，T & S，L & UW，integer & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Data or add & com & re with S1 & & & & & \\
\hline & & －32768（h80 & 32767 & 7FFF） & & & & & \\
\hline
\end{tabular}

\section*{＜Ladder＞}


1．If the word value of \(S 1\) is greater than that of \(S 2\) ，it turns ON．
2．If the word value of \(S 1\) is less than or equal to that of
S2，it turns OFF．
3．Executes the Signed comparision．
（h8000（－32768）to hFFFF（－1）＜ 0 to h7FFF（32767））
\begin{tabular}{|c|c|c|}
\hline Instruction & Condition & Comparision result \\
\hline AND \(>\) & S1 \(>\mathbf{S 2}\) & ON \\
\hline
\end{tabular}

\subsection*{3.2.46 Input comparison instruction(AND<)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Input comparison instruction} & AND \(<\quad\) S1 S2 & \multicolumn{4}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multicolumn{4}{|l|}{} \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{INT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{会} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{鱼} \\
\hline & & Data or address to compare with S2 & & & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{INT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Data or address to compare with S1 & & & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. If the word value of S 1 is less than that of S 2 , it turns ON.
2. If the word value of S1 is greater than or equal to that of S2, it turns OFF.
3. Executes the Signed comparision.
(h8000(-32768) to hFFFF(-1) < 0 to h7FFF(32767))


\section*{3．2．47 Input comparison instruction（AND＜＞）}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Input comparison instruction} & AND＜＞S1 S2 & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Applicable model LP－S044，LP－S070}} \\
\hline OP & DATA type & Available device／Description／Range & & & & \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{INT} & X，Y，F，Z，T，C，M，S，L，D，UW，integer & \multirow[t]{2}{*}{\[
\]} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{瞜}} \\
\hline & & Data or address to compare with S2 & & & & \\
\hline & & －32768（h8000）to 32767（h7FFF） & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{INT} & X，Y，F，Z，T，C，M，S，L，D，UW，integer & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Data or address to compare with S1 & & & & \\
\hline & & －32768（h8000）to 32767（h7FFF） & & & & \\
\hline
\end{tabular}

\section*{＜Ladder＞}


1．If the word values of S 1 and S 2 are not equal，it turns ON．
2．If the word values of S1 and S2 are equal，it turns OFF．
3．Executes the Signed comparision．
（h8000（－32768）to hFFFF（－1）＜ 0 to h7FFF（32767））
\begin{tabular}{|c|r|c|}
\hline Instruction & Condition & Comparision result \\
\hline AND 〈〉 & S1 \(\rangle\) S2 & ON \\
\hline
\end{tabular}

\subsection*{3.2.48 Input comparison instruction(AND>=)}


\section*{<Ladder>}

1. If the word value of S 1 is greater than or equal to that of S2, it turns ON.
2. If the word value of S 1 is less than that of S 2 , it turns OFF.
3. Executes the Signed comparision.
(h8000(-32768) to hFFFF(-1) < 0 to h7FFF(32767))
\begin{tabular}{|l|r|c|}
\hline Instruction & Condition & Comparision result \\
\hline AND \(>=\) & S1 \(>=\mathbf{S} 2\) & ON \\
\hline
\end{tabular}

\subsection*{3.2.49 Input comparison instruction(AND<=)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Input comparison instruction} & AND<= S1 S2 & \multicolumn{5}{|r|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{4}{*}{} & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{}} & \\
\hline \multirow{3}{*}{S1} & \multirow[t]{3}{*}{INT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & & & & \multirow[t]{2}{*}{} \\
\hline & & Data or address to compare with S2 & & & & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{INT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & & & & \\
\hline & & Data or address to compare with S1 & & & & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. If the word value of \(S 1\) is less than or equal to that of
S2, it turns ON.
2. If the word value of \(S 1\) is greater than that of \(S 2\), it turns OFF.
3. Executes the Signed comparision.
(h8000(-32768) to hFFFF(-1) < 0 to h7FFF(32767))
\begin{tabular}{|c|c|c|}
\hline Instruction & Condition & Comparision result \\
\hline AND \(<=\) & \(\mathrm{S} 1<=\mathbf{S 2}\) & ON \\
\hline
\end{tabular}

\subsection*{3.2.50 Input comparison instruction(DAND=)}

<Ladder>

1. If the double word values of S1 and S2 are equal, it turns ON.
2. If the double word values of S1 and S2 are not equal, it turns OFF.
3. Executes the Signed comparision.
(h80000000(-2147483648) to hFFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))
\begin{tabular}{|c|c|c|}
\hline Instruction & Condition & Comparision result \\
\hline DAND \(=\) & S1 \(=\mathbf{S 2}\) & ON \\
\hline
\end{tabular}

\subsection*{3.2.51 Input comparison instruction(DAND>)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Input comparison instruction} & DAND> \(\quad\) S1 S2 & \multicolumn{5}{|r|}{Applicable model} \\
\hline OP & DATA type & Available device / Description / Range & \multicolumn{5}{|r|}{LP-S044, LP-S070} \\
\hline \multirow{3}{*}{S1} & \multirow[t]{3}{*}{DINT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\frac{0}{3} \\
\hline
\end{array}
\]} & \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline 0 \\
O \\
O \\
¢ \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{( \begin{tabular}{l} 
O \\
D \\
\hline
\end{tabular}} \\
\hline & & Data or address to compare with S2 & & & & & \\
\hline & & -2147483648(h80000000) to 2147483647(hFFFFFFFF) & & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{DINT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Data or address to compare with S1 & & & & & \\
\hline & & -2147483648(h80000000) to 2147483647(hFFFFFFFF) & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. If the double word value of S 1 is greater than that of S2, it turns ON.
2. If the double word value of S 1 is less than or equal to that of S2, it turns OFF. .
3. Executes the Signed comparision.
(h80000000(-2147483648) to hFFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))
\begin{tabular}{|l|c|c|}
\hline Instruction & Condition & Comparision result \\
\hline DAND \(>\) & \(\mathrm{S} 1>\mathbf{S 2}\) & ON \\
\hline
\end{tabular}

\subsection*{3.2.52 Input comparison instruction(DAND<)}


\section*{<Ladder>}

1. If the double word value of S 1 is less than that of S2, it turns ON.
2. If the double word value of S1 is greater than or equal to that of S2, it turns OFF.
3. Executes the Signed comparision.
(h80000000(-2147483648) to hFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))
\begin{tabular}{|c|c|c|}
\hline Instruction & Condition & Comparision result \\
\hline DAND く & \(\mathbf{S 1}<\mathbf{S 2}\) & ON \\
\hline
\end{tabular}

\subsection*{3.2.53 Input comparison instruction(DAND<>)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{comparison instruction} & DAND<> S1 S2 & \multicolumn{5}{|r|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{4}{*}{\[
\begin{aligned}
& \mathrm{m} \\
& \text { O} \\
& \text { O}
\end{aligned}
\]} & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{}} & \multirow[b]{3}{*}{} \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{DINT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & & & & \\
\hline & & Data or address to compare with S2 & & & & & \\
\hline & & -2147483648(h80000000) to 2147483647(hFFFFFFFF) & & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{DINT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & & & & \\
\hline & & Data or address to compare with S1 & & & & & \\
\hline & & -2147483648(h80000000) to 2147483647(hFFFFFFFF) & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. If the double word values of S1 and S2 are not equal, it turns ON.
2. If the double word values of S1 and S2 are equal, it turns OFF.
3. Executes the Signed comparision. (h80000000(-2147483648) to hFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))
\begin{tabular}{|c|c|c|}
\hline Instruction & Condition & Comparision result \\
\hline DAND \(\rangle\) & \(\mathrm{S} 1\rangle \mathrm{S} 2\) & ON \\
\hline
\end{tabular}

\subsection*{3.2.54 Input comparison instruction(DAND>=)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Input comparison instruction} & DAND \(>=\quad\) S1 S2 & \multicolumn{5}{|l|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & \multicolumn{5}{|l|}{} \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{DINT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multirow[t]{3}{*}{\[
\begin{array}{|l}
\hline \mathbf{T} \\
\mathbf{O} \\
\hline
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline \mathbb{N} \\
\mathbf{O}
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline \stackrel{Q}{\cong} \\
\end{array}
\]} & \multirow[t]{2}{*}{署} & \multirow[t]{2}{*}{(l) \begin{tabular}{l} 
O \\
\hline 8 \\
\hline
\end{tabular}} \\
\hline & & Data or address to compare with S2 & & & & & \\
\hline & & -2147483648(h80000000) to 2147483647(hFFFFFFFFF) & & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{DINT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Data or address to compare with S1 & & & & & \\
\hline & & -2147483648(h80000000) to 2147483647(hFFFFFFFF) & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. If the double word value of S 1 is greater than or equal to that of \(S 2\), it turns ON .
2. If the double word value of \(S 1\) is less than that of S2, it turns OFF.
3. Executes the Signed comparision.
(h80000000(-2147483648) to hFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))
\begin{tabular}{|c|c|c|}
\hline Instruction & Condition & Comparision result \\
\hline DAND \(>=\) & \(\mathbf{S} 1>=\mathbf{S 2}\) & ON \\
\hline
\end{tabular}

\subsection*{3.2.55 Input comparison instruction(DAND<=)}


\section*{<Ladder>}

1. If the double word value of S 1 is less than or equal to that of S2, it turns ON.
2. If the double word value of S1 is greater than that of
S2, it turns OFF.
3. Executes the Signed comparision.
(h80000000(-2147483648) to hFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))
\begin{tabular}{|c|c|c|}
\hline Instruction & Condition & Comparision \\
\hline DAND \(<=\) & S1 \(<=\mathbf{S 2}\) & ON \\
\hline
\end{tabular}

\subsection*{3.2.56 Input comparison instruction(OR=)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{comparison instruction} & \(\mathrm{OR}=\quad \mathrm{S} 1 \mathrm{~S} 2\) & \multicolumn{5}{|r|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{4}{*}{\[
\begin{array}{|l}
\hline \mathbf{M} \\
\mathbf{O} \\
\hline
\end{array}
\]} & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{}} & \multirow[b]{4}{*}{\begin{tabular}{|c}
\(\substack{\text { ¢ } \\
\text { ¢ }}\) \\
\hline 5 \\
\hline
\end{tabular}} \\
\hline \multirow{3}{*}{S1} & \multirow[t]{3}{*}{INT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & & & & \\
\hline & & Data or address to compare with S2 & & & & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & & & & \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{INT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Data or address to compare with S1 & & & & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. If the word value of S 1 is equal to that of S 2 , it turns ON.
2. If the word value of \(S 1\) is not equal to that of \(S 2\), it turns OFF.
3. Executes the Signed comparision.
(h8000(-32768) to hFFFF(-1) < 0 to h7FFF(32767))
\begin{tabular}{|c|c|c|}
\hline Instruction & Condition & Comparision \\
\hline OR \(=\) & S1 \(=\mathbf{S 2}\) & ON \\
\hline
\end{tabular}

\subsection*{3.2.57 Input comparison instruction(OR>)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Input comparison instruction} & OR> S1 S2 & \multicolumn{5}{|r|}{Applicable model} \\
\hline OP & DATA type & Available device / Description / Range & \multicolumn{5}{|r|}{LP-S044, LP-S070} \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{INT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multirow[t]{3}{*}{\[
\begin{array}{|l}
\hline \mathbf{T} \\
\stackrel{1}{0}
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{|l|}
\hline \mathbf{N} \\
\mathbf{N}
\end{array}
\]} & \multirow[t]{2}{*}{会} & \multirow[t]{2}{*}{O
O
O
O
¢} & \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline\(\frac{0}{8}\) \\
\hline 8 \\
\hline
\end{tabular}} \\
\hline & & Data or address to compare with S2 & & & & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{INT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Data or address to compare with S1 & & & & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & & & & \\
\hline
\end{tabular}
<Ladder>

1. If the word value of \(S 1\) is greater than that of \(S 2\), it turns ON.
2. If the word value of \(S 1\) is less than or equal to that of S2, it turns OFF.
3. Executes the Signed comparision.
(h8000(-32768) to hFFFF(-1) < 0 to h7FFF(32767))
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{} \\
\begin{tabular}{|c|c|c|}
\hline Instruction & Condition & Comparision \\
\hline OR \(>\) & S1 \(>\mathbf{S 2}\) & ON \\
\hline
\end{tabular}
\end{tabular}

\subsection*{3.2.58 Input comparison instruction(OR<)}

<Ladder>

1. If the word value of S 1 is less than that of S 2 , it turns ON.
2. If the word value of S 1 is greater than or equal to that of S2, it turns OFF.
3. Executes the Signed comparision.
(h8000(-32768) to hFFFF(-1) < 0 to h7FFF(32767))
\begin{tabular}{|c|c|c|}
\hline Instruction & Condition & Comparision \\
\hline OR く & \(\mathrm{S} 1<\mathbf{S 2}\) & ON \\
\hline
\end{tabular}

\section*{3．2．59 Input comparison instruction（OR＜＞）}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{comparison instruction} & \multirow[t]{2}{*}{OR＜＞} & S1 & \multirow[t]{2}{*}{S2} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP－S044，LP－S070
\end{tabular}} \\
\hline OP & DATA type & & ／D & & \multirow[t]{3}{*}{\[
\]} & \multirow{3}{*}{\[
\begin{aligned}
& \mathbb{N} \\
& 0
\end{aligned}
\]} & \multirow[b]{3}{*}{\[
\begin{array}{|l|}
\hline \frac{0}{3} \\
\end{array}
\]} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { O} \\
& 0 . \\
& ⿳ 亠 丷 厂 彡 乏
\end{aligned}
\]} & \multirow{3}{*}{} \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{INT} & X，Y，F，Z，T & S，L & UW，integer & & & & & \\
\hline & & Data or add & o com & are with S2 & & & & & \\
\hline & & －32768（h80 & 327 & 7FFF） & & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{INT} & X，Y，F，Z，T， & ，S，L & D，UW，integer & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Data or add & o con & are with S1 & & & & & \\
\hline & & －32768（h80 & 327 & h7FFF） & & & & & \\
\hline
\end{tabular}

\section*{＜Ladder＞}


1．If the word value of \(S 1\) is not equal to that of \(S 2\) ，it turns ON．
2．If the word value of S 1 is equal to that of S 2 ，it turns OFF．
3．Executes the Signed comparision．
（h8000（－32768）to hFFFF（－1）＜ 0 to h7FFF（32767））
\begin{tabular}{|c|c|c|}
\hline Instruction & Condition & Comparision \\
\hline OR \(\rangle\) & S1 \(\rangle\) S2 & ON \\
\hline
\end{tabular}

\subsection*{3.2.60 Input comparison instruction(OR>=)}

<Ladder>

1. If the word value of \(S 1\) is greater than or equal to that of S 2 , it turns ON .
2. If the word value of \(S 1\) is less than that of \(S 2\), it turns OFF.
3. Executes the Signed comparision.
(h8000 (-32768) to hFFFF (-1) < 0 to h7FFF(32767))
\begin{tabular}{|c|c|c|}
\hline Instruction & Condition & Comparision \\
\hline OR \(>=\) & S1 \(>=\mathbf{S 2}\) & ON \\
\hline
\end{tabular}

\subsection*{3.2.61 Input comparison instruction(OR<=)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{comparison instruction} & OR<= S1 S2 & \multicolumn{4}{|l|}{Applicable model} \\
\hline OP & DATA type & Available device / Description / Range & \multicolumn{4}{|l|}{LP-S044, LP-S070} \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{INT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multirow[t]{3}{*}{\[
\sqrt{1}
\]} & & & \(\stackrel{\text { Or}}{\substack{0}}\) \\
\hline & & Data or address to compare with S2 & & & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{INT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Data or address to compare with S1 & & & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. If the word value of \(S 1\) is less than or equal to that of S2, it turns ON.
2. If the word value of \(S 1\) is greater than that of \(S 2\), it turns OFF.
3. Executes the Signed comparision.
(h8000(-32768) to hFFFF(-1) < 0 to h7FFF(32767))
\begin{tabular}{|c|c|c|}
\hline Instruction & Condition & Comparision \\
\hline \(\mathrm{OR}<=\) & \(\mathrm{S} 1<=\mathbf{S 2}\) & ON \\
\hline
\end{tabular}

\subsection*{3.2.62 Input comparison instruction(DOR=)}


\section*{<Ladder>}

1. If the double word value of S 1 is equal to that of S2, it turns ON.
2. If the double word value of \(S 1\) is not equal to that of S2, it turns OFF.
3. Executes the Signed comparision.
(h80000000(-2147483648) to hFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))
\begin{tabular}{|l|c|c|}
\hline Instruction & Condition & Comparision \\
\hline DOR \(=\) & S1 \(=\mathbf{S 2}\) & ON \\
\hline
\end{tabular}

\subsection*{3.2.63 Input comparison instruction(DOR>)}


\section*{<Ladder>}

1. If the double word value of S 1 is greater than that of
S2, it turns ON.
2. If the double word value of S 1 is less than or equal to that of S2, it turns OFF.
3. Executes the Signed comparision.
(h80000000(-2147483648) to hFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))
\begin{tabular}{|c|c|c|}
\hline Instruction & Condition & Comparision \\
\hline DOR \(>\) & \(\mathbf{S 1}>\mathbf{S 2}\) & ON \\
\hline
\end{tabular}

\section*{3．2．64 Input comparison instruction（DOR＜）}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multirow[t]{2}{*}{DOR＜} & \multirow[t]{2}{*}{S1} & \multirow[t]{2}{*}{S2} & \multicolumn{5}{|r|}{Applicable model} \\
\hline & & & & & \multicolumn{5}{|l|}{LP－S044，LP－S070} \\
\hline OP & DATA type & Available & ／De & ription／R & \multirow{4}{*}{\[
\begin{array}{|l}
\mathrm{m} \\
\mathbf{0} \\
\hline 1
\end{array}
\]} & & & & \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{DINT} & X，Y，F，Z， & S，L， & UW，intege & & \multirow[t]{3}{*}{\[
\begin{array}{|l}
\hline \mathbf{N} \\
\mathbf{N} \\
\mathbf{O}
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{|l}
\hline \stackrel{O}{2} \\
\frac{O}{2}
\end{array}
\]} & \multirow[t]{3}{*}{\begin{tabular}{|l|} 
O \\
O \\
O \\
¢ \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{䰻} \\
\hline & & Data or add & com & e with S2 & & & & & \\
\hline & & －21474836 & 000000 & to 214748 & & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{DINT} & X，Y，F，Z， & S，L， & UW，intege & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Data or add & com & e with S1 & & & & & \\
\hline & & －21474836 & 000000 & to 214748 & & & & & \\
\hline
\end{tabular}
＜Ladder＞


1．If the double word value of S 1 is less than that of S2，it turns ON．
2．If the double word value of S 1 is greater than or equal to that of S2，it turns OFF．
3．Executes the Signed comparision．
（h80000000（－2147483648）to hFFFFFFFF（－1）＜
0 to h7FFFFFFF（2147483647））
\begin{tabular}{|c|c|c|}
\hline Instruction & Condition & Comparision \\
\hline DOR く & S1 く S2 & ON \\
\hline
\end{tabular}

\subsection*{3.2.65 Input comparison instruction(DOR<>)}


\section*{<Ladder>}

1. If the double word value of S 1 is not equal to that of S2, it turns ON.
2. If the double word value of S 1 is equal to that of S2, it turns OFF.
3. Executes the Signed comparision.
(h80000000(-2147483648) to hFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))
\begin{tabular}{|c|r|c|}
\hline Instruction & Condition & Comparision \\
\hline DOR 〈〉 & S1 \(\rangle\) S2 & ON \\
\hline
\end{tabular}

\subsection*{3.2.66 Input comparison instruction(DOR>=)}


\section*{<Ladder>}

1. If the double word value of S1 is greater than or equal to that of S 2 , it turns ON .
2. If the double word value of S 1 is less than that of S2, it turns OFF.
3. Executes the Signed comparision.
(h80000000(-2147483648) to hFFFFFFFF(-1) <
0 to h7FFFFFFF(2147483647))
\begin{tabular}{|c|c|c|}
\hline Instruction & Condition & Comparision \\
\hline DOR \(>=\) & S1 \(>=\) S2 & ON \\
\hline
\end{tabular}

\subsection*{3.2.67 Input comparison instruction(DOR<=)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Input comparison instruction} & DOR<= S1 S2 & \multicolumn{5}{|r|}{Applicable model} \\
\hline OP & DATA type & Available device / Description / Range & \multicolumn{5}{|r|}{LP-S044, LP-S070} \\
\hline \multirow{3}{*}{S1} & \multirow[t]{3}{*}{DINT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multirow[t]{3}{*}{\[
\begin{array}{|l}
\hline \text { m } \\
\text { O }
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \mathbf{N} \\
& \mathbf{O}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline \stackrel{O}{3} \\
\end{array}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l} 
O \\
O \\
O \\
® \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{( \begin{tabular}{l} 
O \\
\hline 8 \\
\hline
\end{tabular}} \\
\hline & & Data or address to compare with S2 & & & & & \\
\hline & & -2147483648(h80000000) to 2147483647(h7FFFFFFF) & & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{DINT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & & & & \\
\hline & & Data or address to compare with S1 & & & & & \\
\hline & & -2147483648(h80000000) to 2147483647(h7FFFFFFF) & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. If the double word value of \(S 1\) is less than or equal to that of S2, it turns ON.
2. If the double word value of \(S 1\) is greater than that of

S2, it turns OFF.
3. Executes the Signed comparision.
(h80000000(-2147483648) to hFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{} \\
\hline Instruction & Condition & Comparision \\
\hline DOR \(<=\) & S1 \(<=\mathbf{S 2}\) & ON \\
\hline
\end{tabular}

\subsection*{3.2.68 Comparison instruction(CMP)}

<Ladder>


Compares the word value of S1 with that of S2. The result is as below
1. If \(\mathrm{S} 1<\mathrm{S} 2\), D bit turns ON .
2. If \(S 1=S 2, D+1\) bit turns \(O N\).
3. If S1> S2, D+2 bit turns ON.
4. Comparision executes the Signed operation. (h8000(-32768) to h7FFF(-1) < 0 to h7FFF(32767))


\subsection*{3.2.69 Comparison instruction(DCMP)}


\section*{<Ladder>}


Compares the double word value of S 1 with that of S 2 . The result is as below:
1. If \(\mathrm{S} 1<\mathrm{S} 2, \mathrm{D}\) bit turns ON .
2. If \(S 1=S 2, D+1\) bit turns \(O N\).
3. If \(S 1>S 2, D+2\) bit turns \(O N\).
4. Comparision executes the Signed operation. (h8000(-32768) to h7FFF(-1) < 0 to h7FFF (32767))


\subsection*{3.2.70 Comparison instruction(ACMP)}

<Ladder>


Compares the number of N bit values beginning with S 1 bit with the number of N bit values beginning with S2 bit. As a result :
1. If \(S 1<S 2, D\) bit turns \(O N\).
2. If \(S 1==S 2, D+1\) bit turns \(O N\).
3. If \(S 1>S 2, D+2\) bit turns \(O N\).

Ex) When \(\mathrm{N}=3\)


\subsection*{3.2.71 Comparison instruction(CMPL)}

<Ladder>


Compares the word value of S1 with the number of N word values beginning with S 2 word. As a result :
1. If \(\mathrm{S} 1<\mathrm{S} 2\), D bit turns ON .
2. If \(S 1==S 2, D+1\) bit turns \(O N\).
3. If \(S 1>S 2, D+2\) bit turns \(O N\).

The comparison result of \(S 2+1\) is stored in bits from \(D+3\) to \(D+5\), like this way, the operation results are sequentially stored in D bits.
4. Comparision executes the Signed operation. (h8000(-32768) to hFFFF(-1) < 0 to h7FFF(32767))

\subsection*{3.2.72 Comparison instruction(DCMPL)}


\section*{<Ladder>}


Compares the double word S 1 with the number of N double words beginning with double word S2. As a result :
1. If \(\mathrm{S} 1<\mathrm{S} 2\), D bit turns ON .
2. If \(S 1==S 2, D+1\) bit turns \(O N\).
3. If \(S 1>S 2, D+2\) bit turns \(O N\).

The comparison result of \(S 2+1\) is stored in bits from \(D+3\) to \(D+5\), like this way, the operation results are sequentially stored in D bits.
4. Comparision executes the Signed operation. (h80000000(-2147483648) to hFFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))

\subsection*{3.2.73 Comparison instruction(BWCMP)}


\section*{<Ladder>}


Compare word value of S3 with the limited area between S1 and S2 word values. As a result :
1. If the value of \(S 3\) is less than the smaller value of the two(S1, S2), D bit turns ON.
2. If the value of \(S 3\) is equal to the smaller value of the two, \(\mathrm{D}+1\) bit turns ON.
3. If the value of S3 is located between the two values, \(D+2\) bit turns ON.
4. If the value of \(S 3\) is equal to the larger value of the two, D+3 bit turns ON.
5. If the value of S3 is greater than the larger value of the two, \(\mathrm{D}+4\) bit turns ON.
6. Comparision executes the Signed operation.


Ex) In case of \(S 3=h 3300, S 1=h 1011, S 2=h 2020\),

\(\longrightarrow S 3\) is placed at \(E\) area. Therefore \(D+4\) bit is \(O N\)
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 0 & 0 & 0 & 0 \\
\hline\(D+4\) & \(D+3\) & \(D+2\) & \(D+1\) & \(D\) \\
\hline
\end{tabular}

\subsection*{3.2.74 Comparison instruction(DBWCMP)}


\section*{<Ladder>}


Compares the double word value of S 3 with the limited
area between S1 and S2 word values.
As a result :
1. If the value of \(S 3\) is less than the smaller value of the two(S1, S2), D bit turns ON.
2. If the value of S 3 is equal to the smaller value of the
two, \(D+1\) bit turns ON.
3. If the value of \(S 3\) is located between the two values,
D+2 bit turns ON.
4. If the value of S3 is equal to the larger value of the two, \(\mathrm{D}+3\) bit turns ON .
5. If the value of S 3 is greater than the larger value of the two, \(\mathrm{D}+4\) bit turns ON .
6. Comparision executes the Signed operation.


Ex) In case of S3=h33003300, S1=h10000111, S2=h2020FF00

\(\longrightarrow S 3\) is placed at \(E\) area. Therefore \(D+4\) bit is \(O N\)
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 0 & 0 & 0 & 0 \\
\hline\(D+4\) & \(D+3\) & \(D+2\) & \(D+1\) & \(D\) \\
\hline
\end{tabular}

\subsection*{3.2.75 Transmission instruction(BMOV)}


\section*{<Ladder>}


Transmits the source bit to the destination bit.


\subsection*{3.2.76 Transmission instruction(MOV)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Transmission instruction} & \multicolumn{2}{|l|}{MOV S} & D & \multicolumn{5}{|l|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Availab & / D & D & \multirow{3}{*}{\[
\begin{aligned}
& \hline \mathbf{7} \\
& \text { on }
\end{aligned}
\]} & \multirow{3}{*}{\[
\begin{array}{|l}
\hline N \\
\frac{\mathbb{D}}{\mathbf{O}}
\end{array}
\]} & \multirow{3}{*}{通} & \multirow[b]{3}{*}{\begin{tabular}{|l|}
\hline O \\
O \\
O \\
§ \\
\hline
\end{tabular}} & \multirow{3}{*}{呂} \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{WORD} & X, Y, F, & , S & U & & & & & \\
\hline & & Data to & or de & nu & & & & & \\
\hline & & 0(h0000) & 5(hF & & & & & & 5 \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{WORD} & Y, F, Z, & , L, & & & & & & \\
\hline & & Device & sav & ans & & & & & \\
\hline & & O(h0000) & 5(hF & & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}


Transmits the source word to the destination word.


\subsection*{3.2.77 Transmission instruction(DMOV)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Transmission instruction} & & & D & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & DMOV
Availabl
A & S & cription / Rang & \multirow{3}{*}{\[
\begin{array}{|l|}
\hline \mathbf{7} \\
\mathbf{O} \\
\hline
\end{array}
\]} & \multirow{3}{*}{} & \multirow{3}{*}{\[
\frac{\otimes}{3}
\]} & \multirow[b]{3}{*}{詈} & \multirow{3}{*}{O} \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{DWORD} & X, Y, F, Z, & , S, & , UW, integer & & & & & \\
\hline & & Data to tr & or de & number which & & & & & \\
\hline & & 0(h0000) & 9672 & hFFFFFFFFF) & & & & & 5 \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{DWORD} & Y, F, Z, T, & , L, D & & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Device nu & sav & ansmitted data & & & & & \\
\hline & & 0(h0000) & 9672 & hFFFFFFFF) & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}


Transmits the source double word to the destination double word.


\subsection*{3.2.78 Transmission instruction(BMOVL)}

<Ladder>


Transmits the source bit to the number of N bits beginning with \(D\), one by one.

(D)
(D) +1
(D) +2
(D) +3
D) \(+((\mathrm{N})-1)\)

\subsection*{3.2.79 Transmission instruction(MOVL)}


\section*{<Ladder>}


Transmits the source word to the number of N words beginning with \(D\), one by one.

(D)
(D) +1
(D) +2
(D) +3
(D) \(+((N)-1)\)

\subsection*{3.2.80 Transmission instruction(DMOVL)}

<Ladder>


Transmit the source double word to the number of N double words beginning with \(D\), one by one.

(D)
(D) +1
(D) +2
(D) +3
(D) \(+((\mathrm{N})-1)\)

\subsection*{3.2.81 Transmission instruction(BMOVG)}


\section*{<Ladder>}


Transmits the number of N bit groups beginning with (S) to the number of \(N\) bit groups beginning with (D), in batches.


\subsection*{3.2.82 Transmission instruction(MOVG)}


\section*{<Ladder>}


Transmit the number of N word groups beginning with (S), to the number of N word groups beginning with (D), in batches.


\subsection*{3.2.83 Transmission instruction(DMOVG)}


\section*{<Ladder>}


Transmit the number of N double word groups beginning with ( S ) to the number of N double word groups beginning with (D), in batches.


\subsection*{3.2.84 Transmission instruction(BCMOV)}


\section*{<Ladder>}


Reverses the source device and then transmits it to the destination bit.


\subsection*{3.2.85 Transmission instruction(CMOV)}

<Ladder>


Reverses the source word and then transmits it to the destination word.


\subsection*{3.2.86 Transmission instruction(DCMOV)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Transmission instruction} & DCMOV & S & D & \multicolumn{5}{|l|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & \multicolumn{8}{|l|}{Available device / Description / Range} \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{DWORD} & X, Y, F, Z, T & S, & UW, integer & \multirow[t]{3}{*}{\[
\begin{array}{|l}
\hline \mathrm{M} \\
\stackrel{i}{O}
\end{array}
\]} & \[
\begin{array}{|l|}
\hline N \\
\mathbb{N} \\
\hline
\end{array}
\] & \[
\begin{array}{|l|l|l|}
\hline 9
\end{array}
\] & O & \(\stackrel{\square}{\square}\) \\
\hline & & Data to tran & r de & number which & & & & & \\
\hline & & O(h0000) to & 9672 & hFFFFFFFF) & & \multicolumn{4}{|r|}{5} \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{DWORD} & Y, F, Z, T, C & L, & & & & & & \\
\hline & & Device num & sav & ansmitted data & & & & & \\
\hline & & O(h0000) to & 9672 & hFFFFFFFF) & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}


Reverses the source double word and then transmits it to the destination double word.


\subsection*{3.2.87 Exchange instruction(XCH)}


\section*{<Ladder>}


Exchanges a data in S1 word and a data in S2 word each other.

\subsection*{3.2.88 Exchange instruction(DXCH)}

<Ladder>


Exchanges a data in the double word S1 and a data in the double word S2 each other.


\subsection*{3.2.89 Exchange instruction(AXCH)}


\section*{<Ladder>}


Exchanges the number of N bits beginning with S 1 with the number of \(N\) bits beginning from S 2 each other.


\subsection*{3.2.90 Exchange instruction(SWAP)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Exchange instruction} & SWAP D & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{3}{*}{\[
\begin{array}{|c|}
\hline \mathbf{7} \\
\text { On }
\end{array}
\]} & \multirow{3}{*}{\[
\begin{aligned}
& \mathbf{N} \\
& \frac{\mathbb{O}}{\mathbf{O}}
\end{aligned}
\]} & \multirow{3}{*}{\[
\begin{array}{|l|}
\hline \stackrel{N}{3} \\
\stackrel{N}{2}
\end{array}
\]} & \multirow[b]{3}{*}{\begin{tabular}{l} 
0 \\
O \\
\hline 0 \\
¢
\end{tabular}} & \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{WORD} & Y, F, Z, T, C, M, S, L, D, UW & & & & & \multirow[t]{2}{*}{} \\
\hline & & Data address to exchange upper and lower bit & & & & & \\
\hline & & 0(h0000) to 65535(hFFFF) & & & & & 3 \\
\hline
\end{tabular}
<Ladder>


Exchanges the high order bytes of the designated word with its low order bytes each other.


\subsection*{3.2.91 Exchange instruction(DSWAP)}

<Ladder>


Exchanges the high order word of the designated double word with its low order word.


\subsection*{3.2.92 Rotation instruction(ROR)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Rotation instruction} & & S & C & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & \begin{tabular}{l} 
ROR \\
Availa \\
\hline
\end{tabular} & / D & cription / Ra & & & & & \\
\hline & & Y, F, Z, & L, & & \[
\begin{array}{|l|}
\hline \frac{7}{7} \\
\hline
\end{array}
\] & \(\stackrel{N}{0}\) & Q & 윽 & - \\
\hline S & WORD & Data a & xec & the operation & & & & \(\stackrel{\text { ® }}{ }\) & \\
\hline & & O(h000 & 5(hF & & & & & & 5 \\
\hline & & X, Y, F, & , S, & , UW, integer & & & & & \\
\hline C & WORD & The nu & ts to & te right side & & & & & \\
\hline & & 0 to 25 & & & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}


Rotates the source word to the right side by the number of \(C\) bits.


\subsection*{3.2.93 Rotation instruction(DROR)}


\section*{<Ladder>}


Rotates the source double word to the right side by the number of \(C\) bits.


\subsection*{3.2.94 Rotation instruction(AROR)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Rotation instruction} & AROR & N & C & \multicolumn{5}{|l|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & \multicolumn{3}{|l|}{Available device / Description / Range} & \multirow{3}{*}{W} & \multirow{3}{*}{\[
\begin{array}{|c}
\mathbf{N} \\
\frac{\mathbb{O}}{\mathbf{O}}
\end{array}
\]} & \multirow{3}{*}{管} & & \\
\hline \multirow{3}{*}{S} & \multirow[t]{3}{*}{BIT} & Y, F, T, C & & & & & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{(\%} \\
\hline & & Start add & e & data & & & & & \\
\hline & & Not appl & & & & & & & 7 \\
\hline \multirow{3}{*}{N} & \multirow{3}{*}{WORD} & X, Y, F, Z & UW & integer & & & & & \\
\hline & & The num address & & ute th & & & & & \\
\hline & & To the re & ange & corres & & & & & \\
\hline \multirow{3}{*}{C} & \multirow{3}{*}{WORD} & X, Y, F, Z & UW & integer & & & & & \\
\hline & & The num & te ri & side & & & & & \\
\hline & & 0 to 255 & & & & & & & \\
\hline
\end{tabular}
<Ladder>
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & \\
\hline\(\times 00000\) & & AR0R & M00000 & D0000 \\
\hdashline-1 & & & & D0002 \\
\hline & & & END \\
\hline
\end{tabular}

Within the number of N bits, bits rotate to the right side by the number of \(C\) bits beginning with \(S\) bit.


\subsection*{3.2.95 Rotation instruction(RORC)}


\section*{<Ladder>}


Rotates the source word including carry bit, to the right side by the number of \(C\) bits.


\subsection*{3.2.96 Rotation instruction(DRORC)}

<Ladder>


Rotates the source double word including carry bit, to the right side by the number of \(C\) bits.


\subsection*{3.2.97 Rotation instruction(ARORC)}

<Ladder>


Within the number of N bits, rotates the designated bits including carry bit to the right side by the number of \(C\) bits.


\section*{Rotates to the} right side by the number of N bits

The lowest bit moves to carry bit, carry bit moves to the highest bit

\subsection*{3.2.98 Rotation instruction(ROL)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Rotation instruction} & \multicolumn{2}{|l|}{ROL S} & C & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & \multicolumn{8}{|l|}{Available device / Description / Range} \\
\hline \multirow{3}{*}{S} & \multirow[t]{3}{*}{WORD} & Y, F, Z & , L, & & \multirow[t]{3}{*}{\[
\begin{array}{|l|}
\hline \mathbf{M} \\
\mathbf{O} \\
\hline
\end{array}
\]} & N & @ & 익 & ¢ \\
\hline & & Data & xec & the operation & & & & \(\stackrel{1}{2}\) & \\
\hline & & 0(h0000) & 5(hF & & & & & & 5 \\
\hline \multirow{3}{*}{C} & \multirow{3}{*}{WORD} & X, Y, F & , S, & , UW, integer & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & The n & to & ate left side & & & & & \\
\hline & & 0 to 25 & & & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}


Rotates the source word to the left side by the number of \(C\) bits.
B15
B0
C
\(\begin{array}{lllll}1 & 0 & 1 & 1 & 0\end{array}\)
The highest bit rotates with
carry bit and the lowest bit
Rotates to the left side by the number of N bits

\subsection*{3.2.99 Rotation instruction(DROL)}

<Ladder>


Rotates the source double word to the left side by the number of \(C\) bits.

\subsection*{3.2.100 Rotation instruction(AROL)}

<Ladder>


Within the number of N bits, rotates the designated bits beginning with the \(S\) bit to the left side by the number of \(C\) bits.


\subsection*{3.2.101 Rotation instruction(ROLC)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Rotation instruction} & & S & C & \multicolumn{5}{|r|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & ROLC & / D & ription / Ra & \multirow{3}{*}{} & \multirow{3}{*}{N} & \multirow{3}{*}{Q} & \multirow{3}{*}{O} & \multirow{3}{*}{鱼} \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{WORD} & Y, F, Z, & L, D & & & & & & \\
\hline & & Data ad & xecu & the operation & & & & & \\
\hline & & O(h0000) & (hF & & & & O & & 5 \\
\hline \multirow{3}{*}{C} & \multirow{3}{*}{WORD} & X, Y, F, Z & S, L & , UW, integer & & & & & \\
\hline & & The num & s to & te right side & & & & & \\
\hline & & 0 to 255 & & & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}


Rotates the source word including carry bit to the left side by the number of C bits.


The highest bit moves to carry
Rotates to the
bit, carry bit moves to the
lowest bit number of N bits

\subsection*{3.2.102 Rotation instruction(DROLC)}


\section*{<Ladder>}


Rotates the source double word including the cary bit to the left side by the number of \(C\) bits.


The highest bit moves to carry
Rotates to the
bit, carry bit moves to the left side by the lowest bit number of N bits

\subsection*{3.2.103 Rotation instruction(AROLC)}


\section*{<Ladder>}


Within the range from the source bit to the N bit, rotates the designated bits including the carry bit to the left side by the number of \(C\) bits beginning with the \(S\) bit.


\subsection*{3.2.104 Movement instruction(SFTR)}


\section*{<Ladder>}

1. Within the \(S\) word, moves the 16 -bit of \(S\) word to the right side by the number of N bits.
2. If the \(\mathrm{N}_{\text {th }}\) bit from the low order bit is 1 , carry bit is SET.


\subsection*{3.2.105 Movement instruction(ASFTR)}


\section*{<Ladder>}

1. From the source bit, N1 bits moves to the right side as N2 in the range.
2. The high order bits, which are the number of movement, have " 0 " as their value.
3. If the value of N 2 is greater than N 1 , the values from source bit to N bit are shifted to " 0 ".


\subsection*{3.2.106 Movement instruction(SFTL)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Movement instruction} & SFTL S N & \multicolumn{5}{|r|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multirow[b]{3}{*}{} & \multirow{3}{*}{\[
\begin{array}{|l}
\mathrm{N} \\
\frac{\mathbb{D}}{0}
\end{array}
\]} & \multirow{3}{*}{令} & \multirow[b]{3}{*}{} & \multirow[b]{3}{*}{O} \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{WORD} & Y, F, Z, T, C, M, S, L, D, UW & & & & & \\
\hline & & Data address to execute the operation & & & & & \\
\hline & & 0(h0000) to 65535(hFFFF) & & & (0) & & 9 \\
\hline \multirow{3}{*}{N} & \multirow{3}{*}{WORD} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & & & & \\
\hline & & The number of bits to rotate left side & & & & & \\
\hline & & 0 to 16 & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. Within the source word, move the 16 bits of source word to the left by the number of N bits.
2. If the \(\mathrm{N}_{\mathrm{th}}\) bit from the high order bit is 1 , carry bit is SET.


\subsection*{3.2.107 Movement instruction(ASFTL)}


\section*{<Ladder>}

1. From the source bit, N1 bits moves to the left sied as N 2 in the range.
2. The low order bits, which are the number of movement, have " 0 " as their value.
3. If the value of N 2 is greater than N 1 , the values of designated bits, from source bit to the N 1 , are shifted to " 0 ".


\subsection*{3.2.108 Movement instruction(WSFTR)}

<Ladder>

1. From the source word, N 1 words moves to the right side as N 2 in the range by word unit.
2. The high order words, which are the number of movement, have " 0 " as their value.


\subsection*{3.2.109 Movement instruction(WSFTL)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Movement instruction} & WSFTL & S N1 & N2 & \multicolumn{5}{|l|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available & ipti & / Range & \multirow{3}{*}{\[
\begin{array}{|l|}
\hline \frac{\mathrm{T}}{3}
\end{array}
\]} & \multirow{3}{*}{\[
\begin{array}{|l}
\hline N \\
\mathbf{N} \\
\mathbf{O}
\end{array}
\]} & \multirow{3}{*}{\(\stackrel{0}{3}\)} & \multirow[b]{3}{*}{品} & \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{WORD} & Y, F, Z, T, & & & & & & & \multirow[t]{2}{*}{( \begin{tabular}{l} 
O \\
D \\
\hline
\end{tabular}} \\
\hline & & Data addr & he op & ration & & & & & \\
\hline & & O(h0000) & & & & & & & 9 \\
\hline \multirow{3}{*}{N1} & \multirow{3}{*}{WORD} & X, Y, F, Z, & UW & nteger & & & & & \\
\hline & & The numb & the & signated & & & & & \\
\hline & & To the rem & nge in & correspon & & & & & \\
\hline \multirow{3}{*}{N2} & \multirow{3}{*}{WORD} & X, Y, F, Z, & UW, & integer & & & & & \\
\hline & & The numb & move & the left & & & & & \\
\hline & & To the ran & han th & N1 value & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. From the source word, N1 words moves to the left side as N2 in the range by word unit.
2. The lower order words, which are the number of movement, have " 0 " as their value.


\subsection*{3.2.110 Arithmetic operation instruction(ADD)}


\section*{<Ladder>}

1. Adds the word values of S1 and S2, and then stores the result into the destination word \(D\)
2. Executes the Signed operation.
(h8000 (-32768) to hFFFF (-1) < 0 to h7FFF(32767))
3. If the result value exceeds 'h7FFF(32767)', carry
flag is SET.
4. If the result value is h0000, zero flag is SET.


\subsection*{3.2.111 Arithmetic operation instruction(DADD)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Arithmetic operation instruction} & DADD S1 S2 D & \multicolumn{4}{|l|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & \multirow[t]{3}{*}{} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{\(\stackrel{N}{N}\)}} & \multirow[b]{3}{*}{} \\
\hline \multirow{3}{*}{S1} & \multirow[t]{3}{*}{DINT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & & & \\
\hline & & Data address to execute the addition operation with S2 & & & & \\
\hline & & -2147483648(h80000000) to 2147483647(h7FFFFFFF) & (0) & & & 7 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{DINT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multicolumn{4}{|l|}{\multirow[t]{6}{*}{}} \\
\hline & & Data address to execute the addition operation with S1 & & & & \\
\hline & & -2147483648(h80000000) to 2147483647(h7FFFFFFF) & & & & \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{DINT} & Y, F, Z, T, C, M, S, L, D, UW & & & & \\
\hline & & Address to save the operation result & & & & \\
\hline & & -2147483648(h80000000) to 2147483647(h7FFFFFFF) & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. Adds the double word values of S1 and S2, and then stores the result into the destination double word D .
2. Executes the Signed operation.
(h80000000(-2147483648) to hFFFFFFFFF(-1) <
0 to h7FFFFFFF(2147483647))
3. If the result value exceeds ' h 7 FFFFFFF
(2147483647)', carry flag is SET.
4. If the result value is ' h 00000000 ', zero flag is SET.
\begin{tabular}{|c|c|c|c|}
\hline Double word & & Double word & Double word \\
\hline S1(Source1) & & S2(Source2) & D(Destination) \\
\hline
\end{tabular}

\subsection*{3.2.112 Arithmetic operation instruction(ADDU)}


\section*{<Ladder>}

1. Adds the word values of S1 and S2 and then stores the result into the destination word \(D\)
2. Executes the Unsigned operation.
3. If the result value exceeds 'hFFFF(65535)', carry flag is SET.
4. If the result value is ' h 0000 ', zero flag is SET.


\subsection*{3.2.113 Arithmetic operation instruction(DADDU)}

<Ladder>

1. Adds the double word values of S1 and S2, and then stores the result into the destination double word D .
2. Executes the Unsigned operation.
3. If the result value exceeds 'hFFFFFFFF
(4294967295)', carry flag is SET.
4. If the result value is 'h0000', zero flag is SET.
\begin{tabular}{|c|c|c|c|}
\hline Double word & \multirow[t]{2}{*}{十} & Double word & Double word \\
\hline S1(Source1) & & S2(Source2) & D(Destination) \\
\hline
\end{tabular}

\subsection*{3.2.114 Arithmetic operation instruction(ADDL)}

<Ladder>

1. Adds the word value of \(S 1\) and the number of \(N\) word values beginning with S 2 one by one, and then stores the number of N results into the number of N corresponding destination words beginning with word D.
2. Executes the Signed operation. (h8000(-32768) to hFFFF(-1) < 0 to h7FFF(32767)) 3. If the result value is 'h0000', zero flag is SET.


\subsection*{3.2.115 Arithmetic operation instruction(DADDL)}


\section*{<Ladder>}

1. Adds the double word value of S 1 and the number of N double word values beginning with S 2 one by one, and then stores their results into the number of N corresponding destination double words beginning with double word D respectively.
2. Executes the Signed operation.
(h80000000(-2147483648) to hFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))
3. If the result value is 'h00000000', zero flag is SET.


\subsection*{3.2.116 Arithmetic operation instruction(ADDLU)}

<Ladder>

1. Adds the word value of \(S 1\) and the number of \(N\) word values beginning with S2 one by one, and then stores their results into the number of N corresponding destination words beginning with word D respectively.
2. Executes the Unsigned operation.
3. If the result value exceeds 'hFFFF(65535)' carry flag is SET.
4. If the result value is 'h0000', zero flag is SET.


\subsection*{3.2.117 Arithmetic operation instruction(DADDLU)}


\section*{<Ladder>}

1. Adds the double word value of S 1 and the number of N double word values beginning with S 2 one by one, and then stores their results into the number of N corresponding destination double words beginning with double word D respectively.
2. Executes the Unsigned operation.
3. If the result value exceeds 'hFFFFFFFF
(4294967295)', carry flag is SET.
4. If the result value is 'h0000', zero flag is SET.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Double word} & Double word & Double word \\
\hline S1(Source1) & + & S2(Source2) & D(Destination) \\
\hline
\end{tabular}


\subsection*{3.2.118 Arithmetic operation instruction(SUB)}


\section*{<Ladder>}

1. Subtracts the word value of \(S 2\) from the word value of S1 and then stores the result into the destination word D.
2. Executes the Signed operation. (h8000 (-32768) to hFFFF ( -1 ) < 0 to h7FFF (32767)) 3 . If the result value is ' h 0000 ', zero flag occurs.


\subsection*{3.2.119 Arithmetic operation instruction(DSUB)}


\section*{<Ladder>}

1. Subtracts double word value of \(S 2\) from the double word value of S1 and then stores the result into the destination double word \(D\).
2. Executes the Signed operation.
(h80000000(-2147483648) to hFFFFFFFF(-1) <
0 to h7FFFFFFF(2147483647))
3. If the result value is ' h 00000000 ', zero flag occurs.
\begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline
\end{tabular}

\subsection*{3.2.120 Arithmetic operation instruction(SUBU)}


\section*{<Ladder>}

1. Subtracts the word value of S2 from the word value of S1 and then stores the result into the destination word D
2. Executes the Unsigned operation.
3. If the result value is 'h0000' or out of this, borrow flag occurs.
4. If the result value is 'h0000', zero flag occurs.


\subsection*{3.2.121 Arithmetic operation instruction(DSUBU)}

<Ladder>
\begin{tabular}{|c|c:c|c|}
\hline & & & \\
\hline 000000 & DSUBU & M0000 & M0050 \\
\hdashline-1 & & & \\
\hline
\end{tabular}
1. Subtract the double word value of \(S 2\) from the double word value of S1 and then store the result into the destination double word D .
2. Executes the Unsigned operation.
3. If the result value is ' h 00000000 ' or out of this, borrow flag occurs.
4. If the result value 'h00000000', zero flag occurs.
\begin{tabular}{|c|c|c|}
\hline Double word & Double word & Double word \\
\hline S1(Source1) & S2(Source2) & D(Destination) \\
\hline
\end{tabular}

\subsection*{3.2.122 Arithmetic operation instruction(SUBL)}

<Ladder>

1. Subtracts the number of \(N\) word values, which are from S2 to S2(N-1), from the double word value of S1 respectively, and then stores the result into the number of N corresponding destination doulble words beginning with the word D .
2. Executes the Signed operation.
(h8000 (-32768) to hFFFF(-1) < 0 to h7FFF(32767))
3. If the result value is ' \(h 0000\) ', zero flag occurs.


\subsection*{3.2.123 Arithmetic operation instruction(DSUBL)}


\section*{<Ladder>}

1. Subtracts the number of N double word values, which are from S2 to S2(N-1), from double word value of S1 respectively, and then stores the result into the number of N corresponding destination double words beginning with the double word \(D\).
2. Executes the Signed operation.
(h80000000(-2147483648) to hFFFFFFFF(-1) < 0 to h7FFFFFFF(2147483647))
3. If the result value is ' \(h 00000000\) ', zero flag occurs.


\subsection*{3.2.124 Arithmetic operation instruction(SUBLU)}

<Ladder>

1. Subtracts the number of \(N\) word values, which are from S2 to S2(N-1), from word value of S1 respectively, and then stores the result into the number of N corresponding destination words beginning with the word D .
2. Executes the Unsigned operation.
3. If the result value is 'h0000' or or out of this, borrow flag occurs.
4. If the result value is 'h0000', zero flag occurs.


\subsection*{3.2.125 Arithmetic operation instruction(DSUBLU)}


\section*{<Ladder>}

1. Subtracts the number of N double word values, which are from S2 to S2(N-1), from double word value of S1 respectively, and then stores the result into the number of N corresponding destination beginning with the double word \(D\).
2. Executes the Unsigned operation.
3. If the result value is 'h00000000' or out of this, borrow flag occurs.
4. If the result value 'h00000000', zero flag occurs.
\begin{tabular}{|c|c|c|}
\hline Double word & Double word & Double word \\
\hline S1(Source1) & S2(Source2) & D(Destination) \\
\hline
\end{tabular}

\subsection*{3.2.126 Arithmetic operation instruction(MUL)}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Arithmetic operation instruction} & MUL S1 S2 D & \multicolumn{2}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multirow[b]{4}{*}{} & \multirow[b]{3}{*}{} \\
\hline \multirow[t]{3}{*}{S1} & \multirow[t]{3}{*}{INT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & \\
\hline & & Data address to execute the multiplication with S2 & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & 7 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{INT} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & \\
\hline & & Data address to execute the multiplication with S1 & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{DINT} & Y, F, Z, T, C, M, S, L, D, UW & & \\
\hline & & Address to save the operation result & & \\
\hline & & -2147483648(h80000000) to 2147483647(hFFFFFFFF) & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. Multiplies the word value of \(S 1\) and that of \(S 2\), and then stores the result into the destination double word "D".
2. Executes the Signed operation.

3 . If the result value is ' 0 ', zero flag occurs.


\subsection*{3.2.127 Arithmetic operation instruction(DMUL)}

<Ladder>

1. Multiplies the double word value of S1 and that of S2, and then stores the result into the destination "Quad Word D".
2. Executes the Signed operation.
3. If the result value is ' 0 ', zero flag is SET.


\subsection*{3.2.128 Arithmetic operation instruction(MULU)}


\section*{<Ladder>}

1. Multiplies the word value of S1 and that of S2, and then stores the result into the destination "Double Word DW".
2. Executes the Unsigned operation.
3. If the result value is ' 0 ', zero flag occurs.


\subsection*{3.2.129 Arithmetic operation instruction(DMULU)}


\section*{<Ladder>}

1. Multiplies the double word value of S1 and that of S2, and then stores the result into the destination "Quad Word D".
2. Executes the Unsigned operation.
3. If the result value is ' 0 ', zero flag occurs.

Double word
S1(Source1)


S2(Source2)

Quad word
D(Destination)

\subsection*{3.2.130 Arithmetic operation instruction(MULL)}

<Ladder>

1. Multiplies the word value of \(S 1\) and the number of \(N\) word values, which are from S 2 to \(\mathrm{S} 2(\mathrm{~N}-1)\), respectively, and then stores the result into the number of corresponding destination double words beginning with double word D.
2. Executes the Signed operation.
3. Any one of the results is ' 0 ', zero flag occurs.


\subsection*{3.2.131 Arithmetic operation instruction(DMULL)}


\section*{<Ladder>}

1. Multiplies the double word value of \(S 1\) and the number of N double word values, which are from S 2 to S2(N-1), respectively, and then stores the result into the number of corresponding destination quad words beginning with D .
2. Executes the Signed operation.
3. Any one of the results is ' 0 ', zero flag occurs.


\subsection*{3.2.132 Arithmetic operation instruction(MULLU)}


\section*{<Ladder>}

1. Multiplies the word value of S 1 and the number of N word values, which are from S 2 to \(\mathrm{S} 2(\mathrm{~N}-1)\) respectively, and then stores the result into the number of corresponding destination double words beginning with double word \(D\) one by one.
2. Executes the Unsigned operation.

3 . Any one of the results is ' 0 ', zero flag occurs.


\subsection*{3.2.133 Arithmetic operation instruction(DMULLU)}


\section*{<Ladder>}
 number of N double word values, which are from S 2 to S2( \(\mathrm{N}-1\) ), and then stores the result into the number of N corresponding destination quad words beginning with quad word \(D\) one by one.
2. Executes the Unsigned operation.
3. Any one of the results is ' 0 ', zero flag occurs.


\subsection*{3.2.134 Arithmetic operation instruction(DIV)}


\section*{<Ladder>}

1. Divides the word value of \(S 1\) by that of \(S 2\) and then stores the quotient and the remainder into the destination "Word D" and "Word D+1" respectively.
2. Executes the Signed operation.
3. If the divisor is 0 , error flag is SET.
4. If the dividend is 0 , zero flag is SET.


\subsection*{3.2.135 Arithmetic operation instruction(DDIV)}

<Ladder>

1. Divides the double word value of \(S 1\) by that of \(S 2\) and then stores the quotient and the remainder into the destination "Double Word D" and "Double Word D+1" respectively.
2. Executes the Signed operation.
3. If the divisor is 0 , error flag is SET.
4. If the dividend is 0 , zero flag is SET.


\subsection*{3.2.136 Arithmetic operation instruction(DIVU)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Arithmetic operation instruction} & DIVU S1 S2 D & \multicolumn{5}{|r|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{3}{*}{¢} & \multirow{3}{*}{\(\stackrel{\text { N }}{\text { N }}\)} & \multirow{3}{*}{管} & \multirow[b]{3}{*}{O
O
O
¢} & \multirow[b]{3}{*}{(1) \begin{tabular}{|l} 
O \\
\hline 8 \\
\hline 8
\end{tabular}} \\
\hline \multirow{3}{*}{S1} & \multirow[t]{3}{*}{WORD} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & & & & \\
\hline & & Data address to execute the division operation with S2 & & & & & \\
\hline & & 0(h0000) to 65535(hFFFF) & \(\bigcirc\) & O & & & 7 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{WORD} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & & & & \\
\hline & & Data address to execute the division operation with S1 & & & & & \\
\hline & & 0(h0000) to 65535(hFFFF) & & & & & \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{WORD} & Y, F, Z, T, C, M, S, L, D, UW & & & & & \\
\hline & & Address to save the operation result & & & & & \\
\hline & & 0(h0000) to 65535(hFFFF) & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. Divides the word value of \(S 1\) by that of \(S 2\) and then stores the quotient and the remainder into the destination "Word D" and "Word D+1" respectively.
2. Executes the Unsigned operation.
3. If the divisor is 0 , error flag is SET.
4. If the dividend is 0 , zero flag is SET.


\subsection*{3.2.137 Arithmetic operation instruction(DDIVU)}


\section*{<Ladder>}

1. Divides the double word value of \(S 1\) by that of \(S 2\) and then stores the quotient and the remainder into the destination "Double Word D" and "Double Word D+1" respectively.
2. Executes the Unsigned operation.
3. If the divisor is 0 , error flag is SET.
4. If the dividend is 0 , zero flag is SET.


\subsection*{3.2.138 Arithmetic operation instruction(DIVL)}

<Ladder>

1. Divides the word value of \(S 1\) by the number of \(N\) word values beginning with S2 and then stores the quotient and the remainder into the destination "Word D" and "Word D+1" respectively.
2. Executes the Signed operation.
3. If the divisor is 0 , error flag is SET.
4. If the dividend is 0 , zero flag is SET.



\subsection*{3.2.139 Arithmetic operation instruction(DDIVL)}


\section*{<Ladder>}

1. Divides the double word value of S 1 by the number of N double word values beginning with S 2 and then stores the quotient and the remainder into the destination "Double Word D" and "Double Word D+1" respectively.
2. Executes the Signed operation.
3. If the divisor is 0 , error flag is SET.
4. If the dividend is 0 , zero flag is SET.


\subsection*{3.2.140 Arithmetic operation instruction(DIVLU)}

<Ladder>

1. Divides the word value of \(S 1\) by the number of \(N\) word values beginning with S2 and then stores the quotient and the remainder into the destination "Word D" and "Word D+1" respectively.
2. Executes the Unsigned operation.
3. If the divisor is 0 , error flag is SET.
4. If the dividend is 0 , zero flag is SET.

\begin{tabular}{|c|c|c|}
\hline (S1) & \multirow[t]{6}{*}{\[
\begin{aligned}
& \hline(\mathrm{S} 2) \\
& (\mathrm{S} 2)+1 \\
& \vdots \\
& (\mathrm{~S} 2)+((\mathrm{N})-1)
\end{aligned}
\]} & Quoient \(\xrightarrow{(\mathrm{D})}\) \\
\hline & & \(\xrightarrow{\text { Remainder }} \xrightarrow{(\mathrm{D})+1}\) \\
\hline & & Quoient \(\rightarrow(\mathrm{D})+2\) \\
\hline & & \(\xrightarrow{\text { Remainder }} \xrightarrow{(\mathrm{D})+3}\) \\
\hline & & :Quoient \(\xrightarrow{(\mathrm{D})+2((2 \mathrm{~N})-1)}\) \\
\hline & & \(\xrightarrow{\text { Remainder }} \xrightarrow{(\mathrm{D})+((2 \mathrm{~N})-1)}\) \\
\hline
\end{tabular}

\subsection*{3.2.141 Arithmetic operation instruction(DDIVLU)}

<Ladder>

1. Divides the double word value of S 1 by the number of N double word values beginning with S 2 and then stores the quotient and the remainder into the destination "Double Word D" and "Double Word D+1" respectively.
2. Executes the Unsigned operation.
3. If the divisor is 0 , error flag is SET.
4. If the dividend is 0 , zero flag is SET.


\subsection*{3.2.142 Arithmetic operation instruction(INC)}

<Ladder>

1. Increases the value of destination word D by ' 1 '. 2. If the value is increased from the maximum value by 1 and then becomes 0 , zero flag and carry flag are SET.
\begin{tabular}{|c}
\multicolumn{1}{c}{ D(Destination) word } \\
\hline H3456 \\
\\
\\
\end{tabular}

\subsection*{3.2.143 Arithmetic operation instruction(DINC)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Arithmetic operation instruction} & \multirow[t]{2}{*}{DINC} & D & \multicolumn{5}{|r|}{Applicable model} \\
\hline OP & DATA type & & / Description / Ran & \multicolumn{5}{|l|}{LP-S044, LP-S070} \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{DWORD} & Y, F, Z, T, & L, D, UW & \multirow[t]{3}{*}{\[
\begin{array}{|l|}
\hline \mathrm{m} \\
\mathrm{O} \\
\hline 1
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline N \\
\mathbf{N} \\
\hline \mathbf{O}
\end{array}
\]} & \multirow[t]{2}{*}{翏} & \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline 0 \\
O \\
O \\
O \\
O \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{( \begin{tabular}{l} 
O \\
\hline 8 \\
\hline 8
\end{tabular}} \\
\hline & & Data addr & xecute the operation & & & & & \\
\hline & & O(h0000) & 967295(hFFFFFFFF) & & (0) & (0) & & 3 \\
\hline
\end{tabular}
<Ladder>

1. Increases the value of destination double word \(D\) by '1'.
2. If the value is increased from the maximum value by 1 and then D value becomes 0 , zero flag and carry flag are SET.
\begin{tabular}{|c|c|}
\hline D(Destination) double word \\
\hline H34561245 & \\
& \\
\hline H34561246 \\
\hline
\end{tabular}

\subsection*{3.2.144 Arithmetic operation instruction(DEC)}

<Ladder>

1. Decreases the value of destination word \(D\) by ' 1 '.
2. If \(D\) value is ' 0 ', zero flag is SET.
3. If \(D\) value is decreased again from ' 0 ', borrow flag is SET.
\begin{tabular}{|c}
\hline D(Destination) word \\
\hline H3A56
\end{tabular}

\subsection*{3.2.145 Arithmetic operation instruction(DDEC)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Arithmetic operation Instruction} & DDEC D & \multicolumn{5}{|c|}{Applicable model} \\
\hline OP & DATA type & Available device / Description / Range & \multicolumn{5}{|l|}{LP-S044, LP-S070} \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{DWORD} & Y, F, Z, T, C, M, S, L, D, UW & \multirow[t]{3}{*}{\[
\begin{array}{|l}
\hline \frac{\mathrm{T}}{\mathrm{O}} \\
\hline
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \frac{\mathbf{N}}{\mathbf{O}}
\end{aligned}
\]} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline 0 O \\
O \\
O \\
O \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|l}
\hline O \\
\hline 8 \\
\hline 8 \\
\hline
\end{tabular}} \\
\hline & & Data address to execute the operation & & & & & \\
\hline & & O(h0000) to 4294967295(hFFFFFFFF) & & (0) & & O & 3 \\
\hline
\end{tabular}
<Ladder>

1. Decreases the value of destination double word \(D\) by ' 1 '.
2. If \(D\) value is ' 0 ', zero flag is SET.

3 . If \(D\) value is decreased again from ' 0 ', carry flag is SET.


\subsection*{3.2.146 Arithmetic operation instruction(ADDB)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Arithmetic operation instruction} & \multirow[t]{2}{*}{ADDB} & \multirow[t]{2}{*}{S1} & \multirow[t]{2}{*}{S2} & \multirow[t]{2}{*}{D} & \multicolumn{5}{|r|}{Applicable model} \\
\hline OP & DATA type & & & & & \multicolumn{5}{|l|}{LP-S044, LP-S070} \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{WORD} & X, Y, F, Z, T & S, L, & UW & Iteger & \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline \mathbf{7} \\
\text { on }
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& N \\
& \hline 0
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Nan } \\
&
\end{aligned}
\]} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} \\
\hline & & Data addre & xecut & the B & addi & & & & & \\
\hline & & h0000 to h9 & & & & & & O & & 7 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{WORD} & X, Y, F, Z, T & , S, L, & UW & iteger & & & & & \\
\hline & & Data addre & xecut & the B & addi & & & & & \\
\hline & & h0000 to h9 & & & & & & & & \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{WORD} & Y, F, Z, T, C & , L, D, & & & & & & & \\
\hline & & Address to & he op & ation & & & & & & \\
\hline & & h0000 to h & & & & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. Adds the word value of \(S 1\) and that of \(S 2\), both are composed of BCD codes, and then stores the result into the destination word \(D\) as BCD code.
2. If any of the value not composed of the BCD code is detected in S 1 and S2, error flag is SET. (Except 0 to 9999)
3. If the result value is out of the range of \(D\), carry flag is SET.
4. If the result value is ' 0 ', zero flag is SET.


\subsection*{3.2.147 Arithmetic operation instruction(DADDB)}

<Ladder>

1. Adds the double word values of S1 and S2, both are composed of BCD codes, and then stores the result into the destination double word D as BCD codes.
2. If any of the value not composed of the BCD code is detected in S1 and S2, error flag is SET.
(Except 0 to 99999999)
3. If the result value is out of the range of \(D\), carry flag is SET.
4. If the result value is ' 0 ', zero flag is SET.
\begin{tabular}{|c|c|c|c|c|}
\hline Double word & \multirow[b]{2}{*}{+} & Double word & \multicolumn{2}{|r|}{Double word} \\
\hline S1(Source1) & & S2(Source2) & \(>\) & D(Destination) \\
\hline 0~99999999 & & 0~99999999 & & 0~99999999 \\
\hline
\end{tabular}

\subsection*{3.2.148 Arithmetic operation instruction(ADDBL)}


\section*{<Ladder>}

1. Adds the word value of S 1 composed of BCD code and the number of N word values beginning with S 2 also composed of BCD code, respectively, and then stores the result into the number of N destination words beginning with D as BCD code.
2. If any of the value not composed of the BCD code is detected in S 1 and S 2 , error flag is SET.
3. If any of the result value from \(D\) to \(D+N\) is out of the D range, carry flag is SET.
4. If any of the result value from \(D\) to \(D+N\) is 0 , zero flag is SET.


\subsection*{3.2.149 Arithmetic operation instruction(DADDBL)}


\section*{<Ladder>}

1. Adds the double word values S 1 composed of BCD code and the number of N double word values beginning with S 2 also composed of BCD code, respectively, and then stores the result into the number of N destination double words beginning with D double word as BCD code.
2. If any of the value not composed of the BCD code is detected in S1 and S2 error flag is SET.
3. If any of the result value from \(D\) and \(D+N\) is out of the \(D\) range, carry flag is SET.
4. If any of the result value from \(D\) and \(D+N\) is 0 , zero flag is SET.
\begin{tabular}{|c|c|c|c|c|}
\hline Double word & \multirow{3}{*}{\[
十
\]} & Double word & \multirow{3}{*}{\[
\rightarrow
\]} & Double word \\
\hline S1(Source1) & & S2(Source2) & & D(Destination) \\
\hline 0~99999999 & & 0~99999999 & & 0~99999999 \\
\hline
\end{tabular}


\subsection*{3.2.150 Arithmetic operation instruction(SUBB)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Arithmetic operation instruction} & SUBB & S1 & S2 & D & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}}} \\
\hline OP & DATA type & \multicolumn{4}{|l|}{Available device / Description / Range} & \multirow[t]{3}{*}{} & & & & \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{WORD} & X, Y, F, Z, & , S, L, & UW & iteger & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{array}{l|l}
0 \\
0 \\
0
\end{array}
\]} & \multirow[t]{2}{*}{詈} & \multirow[t]{2}{*}{\[
\begin{array}{|l|l|l|l|l|}
\hline \frac{0}{\mathbb{D}}
\end{array}
\]} \\
\hline & & Data addre & xecut & the B & subt & & & & & \\
\hline & & h0000 to h & & & & & O & & O & \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{WORD} & X, Y, F, Z, & , S, L, & UW & iteger & \multicolumn{5}{|l|}{\multirow[t]{6}{*}{}} \\
\hline & & Data addre & execut & the B & subt & & & & & \\
\hline & & h0000 to h & & & & & & & & \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{WORD} & Y, F, Z, T, C, & , L, D, & & & & & & & \\
\hline & & Address to & he op & ation & & & & & & \\
\hline & & h0000 to h & & & & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. Subtracts the word value of \(S 2\) composed of \(B C D\) code from the word value of S1 composed of BCD code, and then stores the result into the destination word D as BCD code.
2. If any of the value not composed of the BCD code is detected in S 1 and S2, error flag is SET. (Except 0 to 9999)
3. If the result value is negative number, it is stored as 'h9999'.
4. If the result value is ' 0 ', zero flag is SET.


\subsection*{3.2.151 Arithmetic operation instruction(DSUBB)}


\section*{<Ladder>}

1. Subtracts the double word value of \(S 2\) from double word value of S 1 , both are composed of BCD code, and then stores the result into the destination double word D as BCD code.
2. If any of the value not composed of the BCD code is detected in S1 and S2, error flag is SET. (Except 0 to 99999999)
3. If the result value is negative number, it is stored as 'h9999'.
4. If the result value is ' 0 ', zero flag is SET.


\subsection*{3.2.152 Arithmetic operation instruction(SUBBL)}


\section*{<Ladder>}

1. Subtracts the number of N words values composed of BCD code beginning with S2 from word value of S1 composed of BCD code and then stores the result into the number of N destination words beginning with D as BCD code.
2. If any of the value not composed of the BCD code is detected in S 1 andf S 2 , error flag is SET.
3. If any of the result value in the range from \(D\) to \(D+N\) is negative number in word area, it is stored as 'h9999'.
4. If any of the result value in the range from \(D\) to \(D+N\) is ' 0 ', zero flag is SET.


\subsection*{3.2.153 Arithmetic operation instruction(DSUBBL)}


\section*{<Ladder>}

1. Subtracts the number of N double word values from S2 to S2(N-1), composed of BCD code, from the double word value of S 1 composed of BCD code respectively, and then stores the result into the number of \(N\) destination double words beginning with \(D\) as BCD code.
2. If any of the value not composed of the BCD code is detected in S 1 and S 2 , error flag is SET.
3. If any of the result value in the range from \(D\) to \(D+N\) is out of the D range, carry flag is SET.
4. If any of the result value in the range from \(D\) to \(D+N\) is ' 0 ', zero flag is SET.



\subsection*{3.2.154 Arithmetic operation instruction(MULB)}


\section*{<Ladder>}

1. Multiplies the word value of S 1 and that of S 2 , both are composed of BCD code and then stores the result into the destination double word \(D\) as BCD code.
2. If any of the value not composed of the BCD code is
detected in S 1 and S2, error flag is SET. (Except 0 to 9999)
3. If the result value is out of the D range, carry flag is SET.
4. If the result value is ' 0 ', zero flag is SET.


\subsection*{3.2.155 Arithmetic operation instruction(DMULB)}

<Ladder>

1. Multiplies the double word value of S 1 and that of S2, both are composed of BCD code, and then stores the result into the destination quad word \(D\) as \(B C D\) code.
2. If any of the value not composed of the BCD code is detected in S 1 and S 2 , error flag is SET.
(Except 0 to 99999999)
3. If the result value is out of the D range, carry flag is SET.
4. If the result value is ' 0 ', zero flag is SET.

\subsection*{3.2.156 Arithmetic operation instruction(MULBL)}


\section*{<Ladder>}

1. Multiplies the word value of S 1 and the number of N word values from S 2 to \(\mathrm{S} 2(\mathrm{~N}-1)\), both are composed of BCD code, one by one, and then stores the result into the number of N destination double words beginning with D as BCD code.
2. If any of the value not composed of the BCD code is detected in S1 and S2, error flag is SET.
3. If any of the result value in the range from \(D\) to \(D+N\) is out of the \(D\) range, carry flag is SET.
4. If any of the result value in the range from \(D\) to \(D+N\)
is ' 0 ', zero flag is SET.


\subsection*{3.2.157 Arithmetic operation instruction(DMULBL)}


\section*{<Ladder>}

1. Multiplies the double word value of S 1 composed of \(B C D\) code and the number of \(N\) double words from S 2 to S2(N-1) composed of BCD code, one by one, and then stores the result into the number of N destination quad words beginning with \(D\) as \(B C D\) code.
2. If any of the value not composed of the BCD code is detected in S 1 and S 2 , error flag is SET.
3. If any of the result value in the range from \(D\) to \(D+N\) is out of the D range, carry flag is SET.
4. If any of the result value in the range from \(D\) to \(D+N\) is ' 0 ', zero flag is SET.
\begin{tabular}{|c|c|c|c|c|}
\hline Double word & & Double word & & Quad word \\
\hline S1(Source1) & X & S2(Source2) & & D(Destination) \\
\hline 0~99999999 & & 0~99999999 & & 0~9999...9999 \\
\hline
\end{tabular}


\subsection*{3.2.158 Arithmetic operation instruction(DIVB)}


\section*{<Ladder>}

1. Divides the word value of \(S 1\) composed of BCD code by the word value of S2 composed of BCD code, and then stores the quotient and the remainder into the D and D+1 words respectively.
2. If \(S 2\) is 0 , or either \(S 1\) or \(S 2\) is not the BCD code, error flag is SET.
3. If the quotient is ' 0 ', zero flag is SET.


\subsection*{3.2.159 Arithmetic operation instruction(DDIVB)}


1. Divides the double word value of \(S 1\) composed of BCD code by the double word value of S2 composed of BCD code, and then stores the quotient and the remainder into the D and \(\mathrm{D}+1\) double words respectively.
2. If S 2 is 0 , or either S 1 or S 2 is not the BCD code, error flag is SET.
3. If the quotient is ' 0 ', zero flag is SET.


\subsection*{3.2.160 Arithmetic operation instruction(DIVBL)}


\section*{<Ladder>}

1. Divides the word value of S1 composed of BCD code by the number of N word values from S 2 to \(\mathrm{S} 2(\mathrm{~N}\) 1) composed of BCD code, and then stores the quotient and the remainder into the D and \(\mathrm{D}+1\) double words respectively.
2. If \(S 2\) is 0 , or either \(S 1\) or \(S 2\) is not the \(B C D\) code, error flag is SET.
3 . If the quotient is ' 0 ', zero flag is SET.


\subsection*{3.2.161 Arithmetic operation instruction(DDIVBL)}


\section*{<Ladder>}

1. Divides the double word value of S 1 composed of BCD code by the number of \(N\) double word values from S2 to \(\mathrm{S} 2(\mathrm{~N}-1)\), composed of BCD code, and then stores the quotient and the remainder into the \(D\) and \(\mathrm{D}+1\) double words respectively.
2. If \(S 2\) is 0 , or either \(S 1\) or \(S 2\) is not the BCD code, error flag is SET.
3. If the quotient is ' 0 ', zero flag is SET.



\subsection*{3.2.162 Arithmetic operation instruction(INCB)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Arithmetic operation instruction} & INCB D & \multicolumn{5}{|r|}{Applicable model} \\
\hline OP & DATA type & Available device / Description / Range & \multicolumn{5}{|l|}{LP-S044, LP-S070} \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{WORD} & Y, F, Z, T, C, M, S, L, D, UW & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline \mathbf{T} \\
\\
\hline 1
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline \mathrm{N} \\
\mathrm{O}
\end{array}
\]} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline 0 \\
0 \\
0 \\
\hline O \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{( \begin{tabular}{l} 
O \\
\hline 0 \\
\hline
\end{tabular}} \\
\hline & & BCD data address to execute the operation & & & & & \\
\hline & & h0000 to h9999 & © & © & (0) & & 3 \\
\hline
\end{tabular}

\section*{<Ladder>}

1. Increases the word value of \(D\) composed of \(B C D\) code by 1 as BCD code.
2. If the word value of \(D\) is not the BCD code, error flag is SET.
3. If the increased result is \(0(B C D)\), zero flag is SET.
4. If the result value is out of the \(D\) word range, carry flag is SET.


\subsection*{3.2.163 Arithmetic operation instruction(DINCB)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Arithmetic operation instruction} & DINCB D & \multicolumn{5}{|c|}{Applicable model} \\
\hline OP & DATA type & Available device / Description / Range & \multicolumn{5}{|l|}{LP-S044, LP-S070} \\
\hline \multirow{3}{*}{D} & \multirow[t]{3}{*}{DWORD} & Y, F, Z, T, C, M, S, L, D, UW & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline \mathbf{T} \\
\mathbf{O} \\
\hline 1
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \stackrel{N}{O}
\end{aligned}
\]} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline 0 \\
O \\
O \\
¢ \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{(\%} \\
\hline & & BCD data address to execute the operation & & & & & \\
\hline & & h00000000 to h99999999 & (0) & () & © & & 3 \\
\hline
\end{tabular}

\section*{<Ladder>}

1. Increases the double word value of \(D\) composed of BCD code by 1 as BCD code.
2. If the double word value of \(D\) is not the BCD code, error flag is SET.
3. If the increased result is \(0(B C D)\), zero flag is SET. 4. If the result value is out of the \(D\) double word range, carry flag is SET.


\subsection*{3.2.164 Arithmetic operation instruction(DECB)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Arithmetic operation instruction} & DECB D & \multicolumn{5}{|r|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{3}{*}{\[
\begin{aligned}
& \hline \mathbf{m} \\
& \substack{0}
\end{aligned}
\]} & \multirow{3}{*}{\[
\begin{array}{|l}
\hline N \\
\hline \mathbf{N} \\
\mathbf{O}
\end{array}
\]} & \multirow[b]{3}{*}{鱼} & \multirow[b]{3}{*}{\begin{tabular}{|l|} 
O \\
O \\
O \\
¢
\end{tabular}} & \multirow[b]{3}{*}{(} \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{WORD} & Y, F, Z, T, C, M, S, L, D, UW & & & & & \\
\hline & & \(B C D\) data address to execute the operation & & & & & \\
\hline & & h0000 to h9999 & (0) & © & & (0) & 3 \\
\hline
\end{tabular}

\section*{<Ladder>}

1. Decreases the word value of \(D\) composed of \(B C D\) code by 1 as BCD code.
2. If the word value of \(D\) is not the \(B C D\) code, error flag is SET.
3. If the decreased result is \(0(B C D)\), zero flag is \(S E T\).
4. If the result value is out of \(D\) word range, borrow flag is SET.


\subsection*{3.2.165 Arithmetic operation instruction(DDECB)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Arithmetic operation instruction} & DDECB D & \multicolumn{5}{|l|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & \multirow[t]{3}{*}{} & \multirow{3}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \frac{\mathbb{N}}{\mathbf{O}}
\end{aligned}
\]} & \multirow[b]{3}{*}{\[
\]} & \multirow[b]{3}{*}{\begin{tabular}{|l|}
\hline 0 \\
O \\
O \\
O \\
O
\end{tabular}} & \multirow[b]{3}{*}{(1)} \\
\hline \multirow{3}{*}{D} & \multirow[t]{3}{*}{DWORD} & Y, F, Z, T, C, M, S, L, D, UW & & & & & \\
\hline & & BCD data address to execute the operation & & & & & \\
\hline & & h00000000 to h99999999 & () & (0) & & () & 3 \\
\hline
\end{tabular}

\section*{<Ladder>}

1. Decreases the double word of \(D\) composed of BCD code by 1 as BCD code.
2. If the double word value of \(D\) is not BCD code, error flag is SET.
3. If the decreased result is \(0(B C D)\), zero flag is SET. 4. If the result value is out of the \(D\) double word range, borrow flag is SET.


\subsection*{3.2.166 Logical operation instruction(WAND)}


\section*{<Ladder>}

1. Executes the ' \(\&\) ' operation for every bit of \(S 1\) word and the corresponding bit of S 2 word and then stores the result into the D word.
2. If the result value is ' 0 ', zero flag is SET.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{B15} \\
\hline (S1) & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline \multicolumn{17}{|c|}{B15} \\
\hline (S2) & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
\hline \multicolumn{17}{|r|}{B15 B} \\
\hline (D) & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline
\end{tabular}

\subsection*{3.2.167 Logical operation instruction(DAND)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Logical operation instruction} & DAND S1 S2 D & \multicolumn{4}{|l|}{Applicable model} \\
\hline OP & DATA type & Available device / Description / Range & \multirow[b]{4}{*}{} & & & \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{DWORD} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{-} \\
\hline & & Data address to execute the ' \(\%\) ' operation with S2 & & & & \\
\hline & & O(h0000) to 4294967295(hFFFFFFFF) & & & & 7 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{DWORD} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & & & \\
\hline & & Data address to execute the ' \(\&\) ' operation with S1 & & & & \\
\hline & & O(h0000) to 4294967295(hFFFFFFFF) & & & & \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{DWORD} & Y, F, Z, T, C, M, S, L, D, UW & & & & \\
\hline & & Address to save the operation result & & & & \\
\hline & & O(h0000) to 4294967295(hFFFFFFFF) & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. Executes the ' \(\&\) ' operation for every bit of S1 double word and the corresponding bit of S2 double word and then stores the result into the D double word.
2. If the result value is ' 0 ', zero flag is SET.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{B31} & \multirow[b]{2}{*}{- - -} & \multicolumn{4}{|r|}{B0} \\
\hline (S1) & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & & 1 & 1 & 0 & 0 \\
\hline \multicolumn{13}{|c|}{B31 \&} & \multirow[b]{2}{*}{\(\bullet \bullet \bullet\)} & \multicolumn{4}{|r|}{B0} \\
\hline (S2) & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & & 1 & 0 & 0 & 1 \\
\hline \multicolumn{13}{|c|}{31 II} & \multicolumn{5}{|r|}{B0} \\
\hline (D) & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & - - - & 1 & 0 & 0 & 0 \\
\hline
\end{tabular}

\subsection*{3.2.168 Logical operation instruction(AAND)}


\section*{<Ladder>}


Executes the ' \(\&\) ' operation for the number of N bits, from S1 to SN, and the number of N bits, from S 2 to S2( \(\mathrm{N}-1\) ), and then stores the result into the number of N bits beginning with D .


\subsection*{3.2.169 Logical operation instruction(WANDL)}


\section*{<Ladder>}

1. Executes the bitwise ' \(\&\) ' operation for every bit of S1 word and the number of N words from S2 to S2(N-1) and then stores the result into the number of N words beginning with D .
2. If the result value is ' 0 ' word, zero flag is SET.



\subsection*{3.2.170 Logical operation instruction(DANDL)}


\section*{<Ladder>}

1. Executes the bitwise ' \(\&\) ' operation for every bit of S1 double words and the number of N words from S 2 to \(\mathrm{S} 2(\mathrm{~N}-1)\) and then stores the result into the number of N words beginning with D .
2. If the result value is ' 0 ' double word, zero flag is SET.



\subsection*{3.2.171 Logical operation instruction(WOR)}


\section*{<Ladder>}

1. Executes the logical 'OR' operation for every bit in S1 words and the corresponding bit of S2 words, and then stores the result into the D word.
2. If the result value is ' 0 ', zero flag is SET.


\subsection*{3.2.172 Logical operation instruction(DOR)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Logical operation instruction} & DOR S1 S2 D & \multicolumn{4}{|l|}{Applicable model} \\
\hline OP & DATA type & Available device / Description / Range & \multicolumn{4}{|l|}{LP-S044, LP-S070} \\
\hline \multirow{3}{*}{S1} & \multirow[t]{3}{*}{DWORD} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & \multirow[t]{3}{*}{\[
\begin{array}{|l}
\hline \mathrm{M} \\
\text { O}
\end{array}
\]} & ¢ & (\%) & O \\
\hline & & Data address to execute the 'OR' operation with S2 & & & - & \\
\hline & & 0(h0000) to 4294967295(hFFFFFFFF) & & & & 5 \\
\hline \multirow{3}{*}{S2} & \multirow{3}{*}{DWORD} & X, Y, F, Z, T, C, M, S, L, D, UW, integer & & & & \\
\hline & & Data address to execute the 'OR' operation with S1 & & & & \\
\hline & & O(h0000) to 4294967295(hFFFFFFFF) & & & & \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{DWORD} & Y, F, Z, T, C, M, S, L, D, UW & & & & \\
\hline & & Address to save the operation result & & & & \\
\hline & & O(h0000) to 4294967295(hFFFFFFFF) & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}
\begin{tabular}{|c|c|ccc|}
\hline & & & & \\
\hline\(\times 00000\) & D0R & M0000 & M0050 & D0000 \\
\hline-1 & & & & \\
\hline
\end{tabular}
1. Executes the logical 'OR' operation for every bit of S1 double words and the corresponding bit of S2 double words, and then stores the result into the D double word.
2. If the result value is ' 0 ', zero flag is \(S E T\).


\subsection*{3.2.173 Logical operation instruction(AOR)}

<Ladder>


Executes the logical 'OR' operation for the number of \(N\) bits from S 1 to SN and the number of N bits from S 2 to \(\mathrm{S} 2(\mathrm{~N}-1)\), and then stores the result into the the number of \(N\) bits beginning with \(D\).


\subsection*{3.2.174 Logical operation instruction(WORL)}


\section*{<Ladder>}

1. Executes the bitwise logical 'OR' operation for every bit of S1 words and the number of N words from S2 to \(\mathrm{S} 2(\mathrm{~N}-1)\), and then stores the result into the D word.
2. If the result value is ' 0 ' word, zero flag is SET.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{B15} & B0 \\
\hline (S1) & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline \multicolumn{17}{|r|}{B15 OR B} \\
\hline (S2) & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
\hline \multicolumn{17}{|r|}{B15 B} \\
\hline (D) & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
\hline
\end{tabular}

\subsection*{3.2.175 Logical operation instruction(DORL)}


\section*{<Ladder>}

1. Executes the bitwise logical 'OR' operation for every bit of S 1 double word and the number of N double words from S 2 to \(\mathrm{S} 2(\mathrm{~N}-1)\) respectively and then stores the result into the number of N double words beginning with D double word.
2. If the result value is ' 0 ' double word, zero flag is SET.


\subsection*{3.2.176 Logical operation instruction(XOR)}


\section*{<Ladder>}

1. Executes the logical 'XOR' operation for every bit of S1 word and the corresponding bit of S2 word and then stores the result into the D word.
2. If the result value is ' 0 ', zero flag is SET.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{B15} & B0 \\
\hline (S1) & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline \multicolumn{17}{|c|}{B15 XOR} \\
\hline (S2) & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
\hline \multicolumn{17}{|c|}{B15} \\
\hline (D) & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}

\subsection*{3.2.177 Logical operation instruction(DXOR)}

<Ladder>

1. Executes the logical 'XOR' operation for every bit of S1 double word and the corresponding bit of S2 double word and then stores the result into the D double word.
2. If the result value is ' 0 ', zero flag is SET.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{B31} & \multicolumn{5}{|r|}{B0} \\
\hline (S1) & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & - - - & 1 & 1 & 0 & 0 \\
\hline \multicolumn{13}{|c|}{B31 XOR} & \multicolumn{5}{|r|}{B0} \\
\hline (S2) & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & - - - & 1 & 0 & 0 & 1 \\
\hline \multicolumn{13}{|c|}{B31} & \multicolumn{5}{|r|}{B0} \\
\hline (D) & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & - - - & 0 & 1 & 0 & 1 \\
\hline
\end{tabular}

\subsection*{3.2.178 Logical operation instruction(AXOR)}


\section*{<Ladder>}


Executes the logical 'XOR' operation for the number of \(N\) bits from S 1 to SN and the number of N bits from S2 to S2(N-1), bit by bit, and then stores the result into the number of N bits beginning with D destination bit.


\subsection*{3.2.179 Logical operation instruction(XORL)}


\section*{<Ladder>}

1. Executes the bitwise logical 'XOR' operation for every bit of S 1 word and the number of N words, from S 2 to \(\mathrm{S} 2(\mathrm{~N}-1)\), then stores the result into the number of N words beginning with D .
2. If the result value is ' 0 ' word, zero flag is SET.


\subsection*{3.2.180 Logical operation instruction(DXORL)}


\section*{<Ladder>}

1. Executes the bitwise logical 'XOR' operation for every bit of S1 double word and the number of N double words from S 2 to \(\mathrm{S} 2(\mathrm{~N}-1)\), and then stores the result into the number of N double words beginning with D.
2. If the result value is ' 0 ' double word, zero flag is SET.


\subsection*{3.2.181 Logical operation instruction(XNR)}


\section*{<Ladder>}

1. Executes the logical 'XNR' operation for every bit of S1 word and the corresponding bit of S2 word, bit by bit, and then stores the result into the D word. 2. If the result value is ' 0 ', zero flag is SET.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{B15} & \\
\hline (S1) & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline \multicolumn{17}{|c|}{5 XNR} \\
\hline (S2) & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
\hline \multicolumn{17}{|c|}{B15} \\
\hline (D) & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline
\end{tabular}

\subsection*{3.2.182 Logical operation instruction(DXNR)}

<Ladder>

1. Executes the logical 'XNR' operation for every bit of S1 double word and the corresponding bit of S2 double word, and then stores the result into the D double word.
2. If the result value is ' 0 ', zero flag is SET.


\subsection*{3.2.183 Logical operation instruction(AXNR)}

<Ladder>


Executes the logical 'XNR' operation for the number of \(N\) bits from \(S 1\) to \(S N\) and the number of \(N\) bits from S2 to \(\mathrm{S} 2(\mathrm{~N}-1)\), and then stores the result into the number of N bits beginning with D destination bit.


\subsection*{3.2.184 Logical operation instruction(XNRL)}


\section*{<Ladder>}

1. Executes the bitwise logical 'XNR' operation for every bit of S 1 word and the number of N words from S 2 to \(\mathrm{S} 2(\mathrm{~N}-1)\) bit by bit, and then stores the result into the number of N words from D word.
2. If the result value is ' 0 ' word, zero flag is SET.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{B15} & B0 \\
\hline (S1) & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline \multicolumn{17}{|r|}{B15 XNR} \\
\hline (S2) & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
\hline \multicolumn{17}{|c|}{B15} \\
\hline (D) & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline
\end{tabular}

\subsection*{3.2.185 Logical operation instruction(DXNRL)}


\section*{<Ladder>}

1. Executes the logical 'XNR' operation for every bit of S1 double word and the number of \(N\) double words from S 2 to \(\mathrm{S} 2(\mathrm{~N}-1)\), bit by bit, and then stores the result into the number of N double words beginning with D.
2. If the result value is ' 0 ' double word, zero flag is SET.


\subsection*{3.2.186 BIN/BCD conversion instruction(BIN2BCD)}


\section*{<Ladder>}

1. Converts the BINARY data ( 0 to h 270 F ) stored in S device into the BCD data and then stores the result into the D word.
2. If the converted value is out of the range between 0 to 9999(BIN data 0 to h270F), error flag is SET.


\subsection*{3.2.187 BIN/BCD conversion instruction(DBIN2BCD)}

<Ladder>

1. Converts the BINARY data (0 to h05F5E0FF) stored in S double word into the BCD data, and then stores the result into the D double word.
2. If the converted value is out of the range from 0 to 99999999(BIN data 0 to h05F5E0FF), error flag is SET.


\subsection*{3.2.188 BIN/BCD conversion instruction(BCD2BIN)}

<Ladder>

1. Converts the BCD code (0 to 9999) stored in \(S\) word into the BINARY data, and then stores the result into the D word.
2. If the \(S\) word is not the BCD code, error flag is SET.


\subsection*{3.2.189 BIN/BCD conversion instruction(DBCD2BIN)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & IN/BCD nversion struction & DBCD2BIN & S & D & \multicolumn{5}{|r|}{Applicable model} \\
\hline OP & DATA type & Available dev & / D & cription / Range & \multicolumn{5}{|l|}{LP-S044, LP-S070} \\
\hline \multirow{3}{*}{S} & \multirow[t]{3}{*}{DWORD} & X, Y, M, S, T, & & JW, integer & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline \mathrm{M} \\
\mathrm{O} \\
\hline
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { N } \\
& \mathbb{N}
\end{aligned}
\]} & \(\stackrel{\text { O}}{\text { O }}\) & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline \begin{tabular}{l} 
O \\
\hline 8 \\
\hline
\end{tabular} \\
\hline
\end{tabular}} \\
\hline & & Device address & hich & es BCD data to be & & & & & \\
\hline & & h00000000 to & 9999 & & () & & & & 5 \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{DWORD} & Y, M, S, T, C, D & Z, F, & & & & & & \\
\hline & & Device addres & sav & converted data & & & & & \\
\hline & & 0 to 99999999 & 000 & 0 to h05F5E0FF) & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. Converts the BCD data stored in \(S\) double word into the BINARY data, and then stores the result into the \(D\) double word.
2. If the \(S\) double word is not the BCD code, error flag is SET.


\subsection*{3.2.190 String conversion instruction(BIN2HASC)}

<Ladder>

1. Converts the BINARY data stored in \(S\) word into the HEX ASCII one by one in order from the upper order value.
2. The converted value is sequentially stored in \(D\) double word beginning with D , by 2 digits per word.
3. The operation range is 'h0000 to hFFFF'.


\subsection*{3.2.191 String conversion instruction(DBIN2HASC)}


\section*{<Ladder>}

1. Converts the BINARY data stored in S double word into the HEX ASCII one by one in order from the upper order value.
2. The converted value is sequentially stored in \(D\) quad word beginning with D , by 2 digits per word.
3. The operation range is h00000000 to HFFFFFFFFF.


\subsection*{3.2.192 String conversion instruction(HASC2BIN)}

<Ladder>

1. Recognizes the double word value of \(S\) as ASCII and stores the corresponding value into the D word. 2. If the converted value is not the HEX ASCII, error bit (F34) is SET. (h30 to h39, h41 to h46)


\subsection*{3.2.193 String conversion instruction(DHASC2BIN)}

<Ladder>

1. Recognizes the quad word value of \(S\) as ASCII and stores the corresponding value into the D double word.
2. If the converted value is not the HEX ASCII, error bit (F34) is SET. (h30 to h39, h41 to h46)


\subsection*{3.2.194 String conversion instruction(BCD2DASC)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{conversion instruction} & \multicolumn{2}{|l|}{BCD2DASC S} & D & \multicolumn{5}{|l|}{Applicable model} \\
\hline OP & DATA type & \multicolumn{3}{|l|}{Available device / Description / Range} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow{3}{*}{} & \multirow[b]{3}{*}{} & \multirow[b]{3}{*}{( \begin{tabular}{l} 
O \\
\hline 8 \\
\hline 8
\end{tabular}} \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{WORD} & X, Y, M, S, T, C & , Z, & JW, integer & & & & & \\
\hline & & Device addres ASCII value & & ves the data to be conve & & & & & \\
\hline & & h0000 to hFFF & & & O & & & & 5 \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{DWORD} & Y, M, S, T, C, D & Z, F, & & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Device address & sa & onverted data & & & & & \\
\hline & & Allowable rang & er b & (h30 to h39, h41 to h46) & & & & & \\
\hline
\end{tabular}
<Ladder>

1. Recoginzes \(B C D\) data stored in \(S\) word as decimal number, converts each digit into the ASCII value and then stores them sequentilally into the D double word.
2. The operation range is 'h0000 to h9999'.
3. If the \(S\) word is not the BCD code, error flag is SET.


\subsection*{3.2.195 String conversion instruction(DBCD2DASC)}

<Ladder>

1. Recognizes BCD data stored in S double word as decimal number, converts each digit into the ASCII value and then stores them sequentially into the \(D\) word.
2. The operation range is h00000000 to h99999999.
3. If the \(S\) word is not the BCD code, error flag is SET.


\subsection*{3.2.196 String conversion instruction(DASC2BIN)}

<Ladder>

1. Recognizes the ASCII data stored in \(S\) word as decimal number, convert each digit into the BINARY value, and then stores them into the D word.
2. The lower order byte of the first source word determines the sign of the BINARY value.
3. The sign value is \(+(\mathrm{H} 2 \mathrm{~B}),-(\mathrm{H} 2 \mathrm{D})\)
4. If the sign value is positive, it can be omitted.
5. The D word is stored as Signed.
6. The operation range is \(-32768(\mathrm{~h} 8000)\) to 32767(h7FFF).
7. If the S word is not in the valid \(\mathrm{ASCll}(\mathrm{h} 30\) to h39) range, corresponding to 0 to 9 , error bit (F34) is SET.


Ex) If omitting the sign, the highest ASCII The highest code value is located in the sign data.


\subsection*{3.2.197 String conversion instruction(DDASC2BIN)}
String conversion DDASC2BIN S D instruction
Applicable model
LP-S044, LP-S070
OP \(\quad\) DATA type \(\quad\) Available device / Description / Range
\begin{tabular}{|c|c|c|}
\hline \multirow{3}{*}{S} & \multirow{3}{*}{WORD} & X, Y, M, S, T, C, D, Z, F, UW, integer \\
\hline & & Device address which saves the Dec ASCII data to be converted as BIN value \\
\hline & & h30 to h39 per byte except sign bit (h2D, h28) \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{DINT} & Y, M, S, T, C, D, Z, F, UW \\
\hline & & Device address to save converted data \\
\hline & & -2147483648(h80000000) to 2147483647(hFFFFFFFF) \\
\hline
\end{tabular}

<Ladder>

1. Recognizes the ASCII data stored in S word as decimal number and convert each digit into the BINARY value then stores them into the D word.
2. The lower order byte of the first source word determines the sign of the BINARY value.
3. The sign value is \(+(\mathrm{H} 2 \mathrm{~B}),-(\mathrm{H} 2 \mathrm{D})\).
4. If the sign value is positive, it can be omitted.
5. The D word is stored as Signed.
6. The operation range is -2147483648 (h80000000)
to 2147483647 (h7FFFFFFF).
7. If the \(S\) word is not in the valid \(\mathrm{ASCII}(\mathrm{h} 30\) to h39) range, corresponding to 0 to 9 , error bit (F34) is SET.


\subsection*{3.2.198 String conversion instruction(STR2ASC)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{String conversion instruction} & STR2ASC & S & D & \multicolumn{5}{|l|}{Applicable model} \\
\hline OP & DATA type & Available d & / D & ription / Ran & & & & & \\
\hline & & STRING & & & T & \[
\begin{aligned}
& \mathrm{N} \\
& \mathbf{N} \\
& \hline
\end{aligned}
\] & \(\stackrel{\text { ® }}{\text { ® }}\) & O & \(\underset{\sim}{\square}\) \\
\hline S & STRING & STRING dat & conve & as ASCII value & & & & \(\Sigma\) & \\
\hline & & String & & & & & & & 7 \\
\hline & & Y, M, S, T, C & , F, & & & & & & \\
\hline D & WORD & Device addr & sav & converted data & & & & & \\
\hline & & ASCII value & & & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. Converts STRING into the ASCII and then stores it sequentially into the \(D\).
2. It is available to input up to 128 characters.


\subsection*{3.2.199 String conversion instruction(DASC2BCD)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{String conversion instruction} & DASC2BCD S D & \multicolumn{5}{|c|}{Applicable model} \\
\hline OP & DATA type & Available device / Description / Range & \multicolumn{5}{|l|}{LP-S044, LP-S070} \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{WORD} & X, Y, M, S, T, C, D, Z, F, UW, integer & \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline \frac{\mathrm{T}}{\mathbf{O}}
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \mathbf{D} \\
& \mathbf{O}
\end{aligned}
\]} & \multirow[t]{2}{*}{良} & \multirow[t]{2}{*}{O
O
O
¢} & \multirow[t]{2}{*}{} \\
\hline & & Device address which saves the Dec ASCII data to be converted as BCD value & & & & & \\
\hline & & h30 to h39 per byte except sign bit (h2D, h28) & © & & & & 5 \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{WORD} & Y, M, S, T, C, D, Z, F, UW & & & & & \\
\hline & & Device address to save converted data & & & & & \\
\hline & & h0000 to h9999 & & & & & \\
\hline
\end{tabular}
<Ladder>

1. Recognizes the ASCII data stored in \(S\) word as decimal number and convert it into the BCD code then stores it into the D word.
2. The converted value is stored as Unsigned and the operation range is h0000 to h9999.
3. If the converted result is not in the valid ASCII range(h30 to h39), error flag is SET.


\subsection*{3.2.200 String conversion instruction(DDASC2BCD)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{conversion instruction} & \multicolumn{2}{|l|}{DDASC2BCD S} & D & \multicolumn{5}{|l|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & \multicolumn{3}{|l|}{Available device / Description / Range} & \multirow{3}{*}{\[
\begin{array}{|l}
\hline \mathrm{M} \\
\bar{O} \\
\underline{0}
\end{array}
\]} & \multirow{3}{*}{\({ }^{\text {N }}\)} & \multirow{3}{*}{\(\stackrel{1}{3}\)} & \multirow[t]{3}{*}{} & \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{WORD} & X, Y, M, S, T, C, & , Z, & JW, integer & & & & & \multirow[t]{2}{*}{(} \\
\hline & & Device address as \(B C D\) value & wich & ves the Dec A & & & & & \\
\hline & & Allowable range & er b & (h30 to h39) & © & & & & 5 \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{DWORD} & Y, M, S, T, C, D, & , F, & & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Device address & sav & onverted data & & & & & \\
\hline & & h00000000 to h & 9999 & & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}

1. Recognizes the ASCII data stored in \(S\) word as decimal number and convert it into the BCD code, then stores it into the D word one by one.
2. The converted value is stored as Unsigned, and the operation range is 'h00000000 to h99999999'. 3. If the converted result is not in the valid ASCII range ( h 30 to h 39 ), error flag is SET. (BCD range: 0 to 9)


\subsection*{3.2.201 String conversion instruction(BIN2DASC)}


\section*{<Ladder>}

1. Recognizes the BIN data stored in S word as decimal number and converts it into the ASCII code, then stores it sequentially into the \(D\), beginning with \(D\) word, by 2 digits per word.
2. If the word value of \(S\) is negative, the sign value '(H2D)' will firstly be output on the first byte of D word. 3. Executes the Signed operation, and the operation range is \(-32768(\mathrm{~h} 8000)\) to \(32767(\mathrm{~h} 7 \mathrm{FFF})\).


\subsection*{3.2.202 String conversion instruction(DBIN2DASC)}


\section*{<Ladder>}

1. Recognizes the BIN data stored in S double word as decimal number and converts it into the ASC II, then stores it into the D word beginning with D , by 2 digits per word.
2. If the word value of \(S\) is negative, the sign value '(H2D)' will firstly be output on the first byte of D word. 3. Executes the Signed operation, and the operation range is \(-2147483648(h 80000000)\) to 2147483647(h7FFFFFFF).
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{7}{*}{BIN data} & \multirow{7}{*}{\(>\) Decimal data \(\stackrel{\text { Code }}{\text { converting }}\)} & \multicolumn{3}{|c|}{B15 B8 B7} \\
\hline & & D word & The highest ASCII code value & Sign data value \\
\hline & & D word+1 & 3rd ASCII code value & 2nd ASCII code value \\
\hline & & D word+2 & 5th ASCII code value & 4th ASCII code value \\
\hline & & D word+3 & 7th ASCII code value & 6th ASCII code value \\
\hline & & D word+4 & 9th ASCII code value & 8th ASCII code value \\
\hline & & D word+5 & H00 & 10th ASCII code value \\
\hline
\end{tabular}

\subsection*{3.2.203 Code conversion instruction(GRY2BIN)}


\section*{<Ladder>}


Converts the GRAY code data stored in S word into the BINARY data and stores it into the D.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{B15} & \multirow[b]{2}{*}{GRAY code} \\
\hline S word & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & \\
\hline & \multicolumn{16}{|l|}{} & \multirow[b]{2}{*}{BIN code} \\
\hline D word & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & \\
\hline
\end{tabular}

\subsection*{3.2.204 Code conversion instruction(DGRY2BIN)}

<Ladder>


Converts the GRAY code data stored in S double word into the BINARY data and stores it into the D double word.


\subsection*{3.2.205 Code conversion instruction(BIN2GRY)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Code conversion instruction} & \multicolumn{2}{|l|}{BIN2GRY S} & D & \multicolumn{5}{|r|}{Applicable model} \\
\hline OP & DATA type & Available dev & 1 & rip & \multicolumn{5}{|l|}{LP-S044, LP-S070} \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{WORD} & X, Y, M, S, T, C & , Z, & JW, & \multirow[t]{3}{*}{\[
\stackrel{7}{\mathrm{O}}
\]} & \multirow[t]{2}{*}{\(\stackrel{\text { N }}{\substack{\text { ¢ }}}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{( \begin{tabular}{l} 
O \\
\hline 8 \\
\hline
\end{tabular}} \\
\hline & & Device addres code value & which & ves & & & & & \\
\hline & & O(h0000) to 65 & 5(hF & & & & & & 5 \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{WORD} & Y, M, S, T, C, D & Z, F, & & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Device address & o sav & onv & & & & & \\
\hline & & O(h0000) to 65 & 5(hF & & & & & & \\
\hline
\end{tabular}
<Ladder>


Converts the BINARY code data stored in S word into the GRAY code data and then stores it into the D word.


\subsection*{3.2.206 Code conversion instruction(DBIN2GRY)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Code conversion instruction} & D & \multicolumn{5}{|r|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & & & & & \\
\hline & & X, Y, M, S, T, C, D, Z, F, UM, integer & T & \(\stackrel{N}{\text { N }}\) & \(\stackrel{(2)}{9}\) & O &  \\
\hline S & DWORD & Device address which saves the data to be converted as GRAY code value & & & & \(\stackrel{\text { ¢ }}{\substack{\text { ® }}}\) & O \\
\hline & & 0(h00000000) to 4294967295(hFFFFFFFF) & & & & & 5 \\
\hline & & Y, M, S, T, C, D, Z, F, UW & & & & & \\
\hline D & DWORD & Device address to save converted data & & & & & \\
\hline & & O(h00000000) to 4294967295(hFFFFFFFF) & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}


Converts the BINARY code data stored in S double word into the GRAY code data and then stores it into the D double word.


\subsection*{3.2.207 Sign reversal instruction(NEG)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Sign reversal instruction} & NEG D & \multicolumn{5}{|r|}{\begin{tabular}{l}
Applicable model \\
LP-S044, LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{3}{*}{윽} & \multirow{3}{*}{\[
\begin{array}{|l}
\hline \mathbf{N} \\
\stackrel{\mathbb{O}}{\mathbf{O}}
\end{array}
\]} & \multirow{3}{*}{\[
\]} & \multirow[b]{3}{*}{\begin{tabular}{|l|}
\hline 0 \\
0 \\
0 \\
\hline O \\
¢
\end{tabular}} & \multirow[b]{3}{*}{} \\
\hline \multirow{3}{*}{D} & \multirow{3}{*}{WORD} & Y, M, S, T, C, D, Z, F, UW & & & & & \\
\hline & & Device address to convert sign & & & & & \\
\hline & & 0(h0000) to 65535(hFFFF) & & & & & 3 \\
\hline
\end{tabular}

\section*{<Ladder>}

\begin{tabular}{|c|c|c|}
\hline D(Destination) word & & D(Destination) word \\
\hline H0001 & reverceing \({ }^{\text {P }}\) & HFFFF \\
\hline
\end{tabular}

\subsection*{3.2.208 Sign reversal instruction(DNEG)}


\section*{<Ladder>}


Reverses the sign of \(D\) double word.


\subsection*{3.2.209 Data conversion instruction(DECO)}


\section*{<Ladder>}

1. Decodes the number of \(B\) bits stored in \(S\) word from 0 to N and stores the result into the D word. 2. If the \(N\) is 0 , it does not execute the instruction. 3. If the decoded value is not in the range from 0 to 8 , error flag is SET.


\subsection*{3.2.210 Data conversion instruction(ENCO)}


\section*{<Ladder>}

1. Encodes the number of \(N\) words from \(S\) to \(N\) and stores them into the D.
2. If the N is not in the range from 0 to 8 , error flag is SET.
3. If the encoded value is 0 , zero flag is SET.
4. If \(N\) is 0 , it does not execute the instruction.


\subsection*{3.2.211 Data conversion instruction(EXT)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Data conversion instruction} & EXT D & \multicolumn{5}{|l|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & \multirow[b]{3}{*}{\[
\begin{array}{|l|}
\hline \mathrm{M} \\
\mathrm{O} \\
\hline
\end{array}
\]} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \mathbf{N} \\
& \stackrel{\mathbb{N}}{\mathbf{O}}
\end{aligned}
\]} & \multirow[b]{3}{*}{} & \multirow[b]{3}{*}{\begin{tabular}{|l|}
\hline 0 \\
O \\
O \\
O \\
¢
\end{tabular}} & \multirow{3}{*}{O} \\
\hline \multirow{3}{*}{D} & \multirow[t]{3}{*}{INT} & Y, M, S, D, UW & & & & & \\
\hline & & Data address to execute the operation & & & & & \\
\hline & & -32768(h8000) to 32767(h7FFF) & & & & & 3 \\
\hline
\end{tabular}

\section*{<Ladder>}

1. Extends the value of \(D\) word to 32 bit.
2. Executes the Signed operation.


\subsection*{3.2.212 Refresh instruction(REF)}


\section*{<Ladder>}


Refreshes the number of N bit devices beginning with I/O D bit device.

\subsection*{3.2.213 Display instruction(SEG)}


\section*{<Ladder>}


Decodes the number of N data composed of 4 bit per each to the 7 segment data, one by one, and stores it as the number of N data composed of 8 bit per each.


Ex) When N is 3


Segment display
[The structure when connectting AUTONICS display unit]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Display} & \multicolumn{6}{|c|}{Negative logic input} & \multicolumn{6}{|c|}{Postive logic input} \\
\hline Hex. & Dec. & S+3BIT & S+2BIT & S+1BIT & S BIT & BI & LATCH & S+3BIT & S+2BIT & S+1BIT & S BIT & BI & LATCH \\
\hline \begin{tabular}{l}
Zero \\
Blank
\end{tabular} & Zero Blank & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 1 & 1 & 1 & 1 & 0 & \(\times\) & 1 & 0 & 0 & 0 & 1 & \(\times\) & 0 \\
\hline 2 & 2 & 1 & 1 & 0 & 1 & \(\times\) & 1 & 0 & 0 & 1 & 0 & \(\times\) & 0 \\
\hline 3 & 3 & 1 & 1 & 0 & 0 & \(\times\) & 1 & 0 & 0 & 1 & 1 & \(\times\) & 0 \\
\hline 4 & 4 & 1 & 0 & 1 & 1 & \(\times\) & 1 & 0 & 1 & 0 & 0 & \(\times\) & 0 \\
\hline 5 & 5 & 1 & 0 & 1 & 0 & \(\times\) & 1 & 0 & 1 & 0 & 1 & \(\times\) & 0 \\
\hline 6 & 6 & 1 & 0 & 0 & 1 & \(\times\) & 1 & 0 & 1 & 1 & 0 & \(\times\) & 0 \\
\hline 7 & 7 & 1 & 0 & 0 & 0 & \(\times\) & 1 & 0 & 1 & 1 & 1 & \(\times\) & 0 \\
\hline 8 & 8 & 0 & 1 & 1 & 1 & \(\times\) & 1 & 1 & 0 & 0 & 0 & \(\times\) & 0 \\
\hline 9 & 9 & 0 & 1 & 1 & 0 & \(\times\) & 1 & 1 & 0 & 0 & 1 & \(\times\) & 0 \\
\hline A & Blank & 0 & 1 & 0 & 1 & \(\times\) & 1 & 1 & 0 & 1 & 0 & \(\times\) & 0 \\
\hline B & Blank & 0 & 1 & 0 & 0 & \(\times\) & 1 & 1 & 0 & 1 & 1 & \(\times\) & 0 \\
\hline C & Blank & 0 & 0 & 1 & 1 & \(\times\) & 1 & 1 & 1 & 0 & 0 & \(\times\) & 0 \\
\hline D & Blank & 0 & 0 & 1 & 0 & \(\times\) & 1 & 1 & 1 & 0 & 1 & \(\times\) & 0 \\
\hline E & Blank & 0 & 0 & 0 & 1 & \(\times\) & 1 & 1 & 1 & 1 & 0 & \(\times\) & 0 \\
\hline F & Blank & 0 & 0 & 0 & 0 & \(\times\) & 1 & 1 & 1 & 1 & 1 & \(\times\) & 0 \\
\hline HOL & LD & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & 0 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & H \\
\hline
\end{tabular}
"X" : It does not matter whether you input HIGH or LOW level signal.
Blank: It does not display anything even if you input the signal by using input data.
If you connect BI terminal to the VCC(HIGH level)D, it executes the Zero blanking, and if you connect BI terminal to the GND(LOW level) terminal, it displays 0 .
*AUTONICS display unit has embedded DECODER DRIVER, therefore you can use \(\mathbf{S}\) bit without D(Destination) bit.

\subsection*{3.2.214 Clock instruction(TCMP)}

<Ladder>


Compares a data composed of S 1 (hour), S 2 (minute), and S3(second) with a data composed of S4 to S4+2 word, andas a result;
1. If the two values are equal, \(D\) bit turns \(O N\).
2. If S 4 is less than the former, \(\mathrm{D}+1\) bit turns ON .
3. If S 4 is larger than the former, \(\mathrm{D}+2\) bit turns ON .
4. If \(S 4\) value is read as TRD instruction and available.
5. If the input value is not time data (hour:0 to 23, minute:0 to 59 , second:0 to 59) error flag is SET.

\subsection*{3.2.215 Clock instruction(TADD)}


\section*{<Ladder>}

1. Executes the addition operation for each word of S1 device, in which S1(hour), S1+1(minute), or \(\mathrm{S} 1+2\) (second), is stored, and the corresponding word of S2 device, in which S2(hour), S2+1(minute), or \(\mathrm{S} 2+2\) (second) is stored, and store the result into the designated word of \(D\) device respectively.
2. If the time exceeds 24 o'clock, carry flag occurs and the data is stored from 0 again.
3. If the input value is not time data (hour: 0 to 23 , minute:0 to 59 , second:0 to 59) error flag is SET. (Note) Recognizes and displays the data as binary value.


\subsection*{3.2.216 Clock instruction(TSUB)}


\section*{<Ladder>}

1. Executes the subtraction operation for each word of S1 device, in which S 1 (hour)/S1+1(minute)/S1+2 (second) is stored, and the corresponding word of S2 in which S 2 (hour), \(\mathrm{S} 2+1\) (minute) orS2+2 (second) is stored, and then stores the result into the designated word of \(D\) device.
2. If the time is less than 0 o'clock, borrow flag occurs and stores the result after converting into 24-hour data.
3. If the input value is not time data (hour: 0 to 23 , minute:0 to 59 , second:0 to 59) error flag is SET. (Note) Recognizes and displays the data as binary value.


\subsection*{3.2.217 Clock instruction(TRD)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Clock instruction} & TRD D & \multicolumn{5}{|l|}{Applicable model
LP-S044, LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{3}{*}{\[
\begin{array}{|l}
\hline \mathrm{M} \\
\text { 욱 }
\end{array}
\]} & \multirow{3}{*}{N} & \multirow[b]{3}{*}{笭} & \multirow[b]{3}{*}{} & \\
\hline \multirow{3}{*}{D} & \multirow[t]{3}{*}{WORD} & Y, M, S, T, C, D, Z, F, UW & & & & & \multirow[t]{2}{*}{等} \\
\hline & & Device address to save the real time value & & & & & \\
\hline & & Not applicable & & & & & 3 \\
\hline
\end{tabular}

\section*{<Ladder>}


The real time value is stored as below.
1. Year in D word
2. Month in D+1 word
3. Date in D+2 word
4. Hour in D+3 word
5. Minute in D+4 word
6. Second in D+5 word
7. Day of week in D+6 word


\subsection*{3.2.218 Clock instruction(TWR)}

<Ladder>

1. Year in D word
2. Month in \(D+1\) word (1 to 12)
3. Date in D+2 word (1 to 31)
4. Hour in D+3 word (1 to 23)
5. Minute in D+4 word (1 to 59)
6. Second in D+5 word (1 to 59)
7. Day of week in D+6 word (0-sunday to 6-saturday) are stored respectively.
8. Stores the time value into the corresponding position of special register.
9. The special register (time setting) is also been running along with executing TWR instruction.
10. If the input data is out of the valid time range, error flag occurs.


\subsection*{3.2.219 Clock instruction(HOUR)}

<Ladder>

1. If the input contact retains ON status for the designated time (time unit) in S word device, D2 bit turns ON.
2. The ON time value in D1 word device
3. The current value of less then 1 hour is displayed in D1+1 word device at per one second.
S word(designated time) \(>\)\begin{tabular}{l} 
Accumulated ON time of \\
input contact
\end{tabular}


Current value per 1 hour

\section*{D1+1 word}

Current value of less than 1 hour
(per one second)

\subsection*{3.2.220 Clock instruction(TZCP)}


\section*{<Ladder>}


Hour in S1 word, minute in S1+1 word, second in \(\mathrm{S} 1+2\) word,
hour in S2 word, minute in S2+1 word, second in S2+2 word,
hour in S3 word, minute in S3+1 word, second in S3+2 word,
are stored respectively and compares the S3 device value between S1 device and S2 device. As a result:
1. If \(S 3\) value is less than \(S 1\) and \(S 2\) value, \(D\) bit turns \(O N\).
2. If \(S 3\) value is equal to the smaller value of \(S 1\) or \(S 2, D+1\) bit turns \(O N\).
3. If \(S 3\) value is between the values of \(S 1\) value and \(S 2\) value, \(D+2\) bit turns \(O N\).
4. If \(S 3\) value is equal to the bigger value of \(S 1\) or \(S 2, D+3\) bit turns \(O N\).
5. If S 3 value is larger than S 1 value and S 2 value, \(\mathrm{D}+4\) bit turns ON .
6. If the source data is out of the time range (hour: 0 to \(23, \min : 0\) to 59 , sec: 0 to 59 ), error flag occurs.
\begin{tabular}{|c|c|c|}
\hline S1 word(hour) & S2 word(hour) & S3 word(hour) \\
\hline S1+1 word(min) & S2+1 word(min) & S3+1 word(min) \\
\hline S1+2 word(sec) & S2+2 word(sec) & S3+2 word(sec) \\
\hline
\end{tabular}


\subsection*{3.2.221 Motion instruction(MTVDM)}


\section*{<Ladder>}


Speed direct drive instruction: You can designate direct drive data(drive speed, drive direction, etc) directly and it executes speed drive.

[Note]
1. For utilize direct instruction, set 'TRUE' at 'Enable Ch' of common configuration from [Parameter]-[MOTION]tab in SmartStudio.
2. Select accel/deceleration time 1 to 5 in common configuration from [Parameter][MOTION]tab in SmartStudio.
3. You should check whether the correspond channel is using or not before using direct drive instruction.
4. If using channel is input the other instruction, using channel error occurs.

For more information, refer to Motion of SmartStudio user manual.

\subsection*{3.2.222 Motion instruction(MTPDM)}


\section*{<Ladder>}


Position direct drive instruction: You can designate direct drive data(drive speed, drive direction, etc) directly and it executes position drive.

[Note]
1. For utilize direct instruction, set 'TRUE' at 'Enable Ch' of common configuration from [Parameter]-[MOTION]tab in SmartStudio.
2. Select accel/deceleration time 1 to 5 in common configuration from [Parameter][MOTION]tab in SmartStudio.
3. You should check whether the correspond channel is using or not before using direct drive instruction.
4. If using channel is input the other instruction, using channel error occurs.

\footnotetext{
For more information, refer to Motion of SmartStudio user manual.
}

\subsection*{3.2.223 Motion instruction(MTIDM)}

<Ladder>


Indirect designate drive instruction: It operates with the number of scripted string in the specified pattern from pattern list.
[Note]
1. For utilize indirect drive instruction, set 'TRUE' at 'Enable Ch' of common configuration from [Parameter][MOTION]tab in SmartStudio.
2. There should be pattern number to execute of pattern list from from [Parameter]-[MOTION]tab in SmartStudio.
3. You should check whether the correspond channel is using or not before using drive instruction.

\section*{[Pattern stop method]}
1) F400 or F402 (Action list stop) + MTSRS
: During pattern drive, if currently executed action list type is speed drive and this instruction is executed, speed drive is finish and it executes the next action list.
2) F401 or F403 (Group stop) + MTSRS
: During group drive, this instruction is executed, it escapes the group and executes the other action list following the group.
3) Not to set special flag
: Pattern drive is finish.
※ For more information, refer to Motion of SmartStudio user manual.

\subsection*{3.2.224 Motion instruction(MTMEC)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Motion instruction} & MTMEC & S & \multicolumn{5}{|c|}{Applicable model
LP-S070} \\
\hline OP & DATA type & Available & / D & \multirow{3}{*}{\[
\begin{aligned}
& \mathrm{m} \\
& \mathbf{0} \\
& \hline 1
\end{aligned}
\]} & & & & \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{WORD} & X, M, D, Z, & tege & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \frac{\mathrm{D}}{\mathbf{O}}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\frac{0}{2}
\]} & \multirow[t]{2}{*}{詈} & \multirow[t]{2}{*}{\(\xrightarrow{\text { O }}\)} \\
\hline & & Channel(C & & & & & & \\
\hline & & 1 to 2 & & \(\bigcirc\) & & & & 5 \\
\hline
\end{tabular}
<Ladder>


Error remove instruction: This instruction removes the error when error flag occurs by error during motion drive.
※ For more information, refer to Motion of SmartStudio user manual.

\subsection*{3.2.225 Motion instruction(MTEMS)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Motion instruction} & \multicolumn{2}{|l|}{MTEMS S} & \multicolumn{5}{|c|}{\begin{tabular}{l}
Applicable model \\
LP-S070
\end{tabular}} \\
\hline OP & DATA type & Available & / D & \multirow[b]{3}{*}{\[
\begin{array}{|c|}
\hline \frac{9}{3} \\
\underset{i}{2}
\end{array}
\]} & \multirow{3}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \frac{\mathbb{N}}{\mathbf{O}}
\end{aligned}
\]} & \multirow[b]{3}{*}{} & \multirow[b]{3}{*}{品} & \multirow{3}{*}{年} \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{WORD} & X, M, D, Z, & tege & & & & & \\
\hline & & Channel(C & & & & & & \\
\hline & & 1 to 2 & & (0) & & & & 5 \\
\hline
\end{tabular}

\section*{<Ladder>}


Emergency stop instruction: If there is emergency during motion position driving, you can stop all motion actions by emergency stop instruction.
[Note]
When executing emergency stop instruction, all currently executing motion instructions stop.

\footnotetext{
※ For more information, refer to Motion of SmartStudio user manual.
}

\subsection*{3.2.226 Motion instruction(MTCPP)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Motion instruction} & MTCPP & S & S1 & \multicolumn{5}{|c|}{\begin{tabular}{l}
Applicable model \\
LP-S070
\end{tabular}} \\
\hline OP & DATA type & \multicolumn{8}{|l|}{Available device / Description / Range} \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{WORD} & X, M, D, Z & iteg & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\stackrel{1}{2}
\]} & \(\stackrel{9}{29}\) & \multirow[t]{2}{*}{圌} & \multirow[t]{2}{*}{(\%} \\
\hline & & Channel(C & & & & & & & \\
\hline & & 1 to 2 & & & \(\bigcirc\) & & & \multicolumn{2}{|r|}{5} \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{DWORD} & X, M, D, Z & integ & & & & & & \\
\hline & & Setting va & ew & tion & & & & & \\
\hline & & -2,147,483 & 2,1 & 483,647 & & & & & \\
\hline
\end{tabular}
<Ladder>


Current position preset instruction: This motion instruction is for re-set the current position.
[Note]
During motion driving, if this instruction is executed, error occurs.
※ For more information, refer to Motion of SmartStudio user manual.

\subsection*{3.2.227 Motion instruction(MTFOS)}

<Ladder>


Forced home setting instruction: This instruction sets the specified position as the set home position value in SmartStudio.
※ For more information, refer to Motion of SmartStudio user manual.

\subsection*{3.2.228 Motion instruction(MTSRS)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Motion instruction} & MTSRS S & \multicolumn{5}{|l|}{Applicable model LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & & & & & \\
\hline & & X, M, D, Z, UW, integer & \[
\begin{array}{|l|}
\hline \mathbf{0} \\
\hline \mathbf{0}
\end{array}
\] & \[
\begin{aligned}
& \text { N } \\
& 0 \\
& 0
\end{aligned}
\] & 알 & 品 & O \\
\hline S & WORD & Channel(Ch1, Ch2) & & & & \(\stackrel{1}{2}\) & \\
\hline & & 1 to 2 & (0) & & & & 5 \\
\hline
\end{tabular}

\section*{<Ladder>}


Normal stop instruction: It executes normal stop instruction to the currently motion driving channel.

\section*{[Pattern stop method with combinating special flag]}
1. F400 or F402 (Action list stop) + MTSRS
: During pattern drive, if currently executed action list type is speed drive and this instruction is executed, speed drive is finish and it executes the next action list.
2. F401 or F403 (Group stop) + MTSRS
: During group drive, this instruction is executed, it escapes the group and executes the other action list following the group.
3. Not to set special flag
: Pattern drive is finish.
4. MTSRS during linear interpolation drive
: Two axies decelerately stop at the same time.
※ For more information, refer to Motion of SmartStudio user manual.

\subsection*{3.2.229 Motion instruction(MTOBC)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Motion instruction} & MTOBC S & \multicolumn{5}{|c|}{Applicable model
LP-S070} \\
\hline OP & DATA type & Available device / Description / Range & \multirow{3}{*}{\[
\begin{array}{|l}
\hline \mathrm{M} \\
\text { O }
\end{array}
\]} & \multirow{3}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \frac{\mathbb{N}}{\mathbf{O}}
\end{aligned}
\]} & \multirow{3}{*}{\[
\begin{array}{|l}
\hline \frac{\mathrm{N}}{\mathrm{~N}} \\
\mathrm{k}
\end{array}
\]} & \multirow[b]{3}{*}{\[
\begin{array}{|l|}
\hline \text { D } \\
\text { O } \\
\text { O } \\
\text { O}
\end{array}
\]} & \multirow{3}{*}{呂} \\
\hline \multirow{3}{*}{S} & \multirow[t]{3}{*}{WORD} & X, M, D, Z, UW, integer & & & & & \\
\hline & & Channel(Ch1, Ch2) & & & & & \\
\hline & & 1 to 2 & \(\bigcirc\) & & & & 5 \\
\hline
\end{tabular}

\section*{<Ladder>}


Origin back instruction: During motion position drive, if you want to return to origin, it goes back to the preset origin point.
LP-S070 has two methods for returning the origin.
- H/W origin back: It is the origin back method by home search direction, upper/lower H/W limit, and home sensing which are set in SmartStudio. S/W origin back: It is the origin back method to move directly to the known origin by SM.
[Origin back type by home search direction during H/W origin back]



The position of the origin point is set in SmartStudio.
※ For more information, refer to Motion of SmartStudio user manual.

\subsection*{3.2.230 Motion instruction(MTOVV)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Motion instruction} & MTOVV S S1 & \multicolumn{5}{|r|}{\begin{tabular}{l}
Applicable model \\
LP-S070
\end{tabular}} \\
\hline OP & DATA type & \multicolumn{6}{|l|}{Available device / Description / Range} \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{WORD} & X, M, D, Z, UW, integer & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline \mathbf{7} \\
\text { on }
\end{array}
\]} & \multirow[t]{2}{*}{\[
\frac{10}{0}
\]} & @ & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { OO } \\
& \hline \underline{y}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline \mathbf{O} \\
\mathbb{D}
\end{array}
\]} \\
\hline & & Channel(Ch1, Ch2) & & & & & \\
\hline & & 1 to 2 & O & & & & 5 \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{DWORD} & X, M, D, Z, UW, integer & & & & & \\
\hline & & Drive speed & & & & & \\
\hline & & 0 to 100kpps & & & & & \\
\hline
\end{tabular}
<Ladder>



Speed overide: It converts the currently operating speed set (unit set) to the other speed and operates with the converted speed.

\section*{[Note]}
1. If the currently not operated channel is executed this instruction, position/speed override change error occurs.
2. If the currently operated channel is executed the other instruction, enable channel error occurs.
3. Be sure that rapid speed changing may cause the pull-out of motor.
※ For more information, refer to Motion of SmartStudio user manual.

\subsection*{3.2.231 Motion instruction(MTOVP)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Motion instruction} & MTOVP & S & S1 & \multicolumn{5}{|c|}{Applicable model
LP-S070} \\
\hline OP & DATA type & Available & / D & crip & \multirow{3}{*}{(1)} & \multirow{3}{*}{\(\stackrel{N}{\text { N }}\)} & \multirow{3}{*}{管} & \multirow[b]{3}{*}{O
O
O
¢} & \\
\hline \multirow{3}{*}{S} & \multirow{3}{*}{WORD} & X, M, D, Z, & integ & & & & & & \multirow[t]{2}{*}{(\%} \\
\hline & & Channel(C & & & & & & & \\
\hline & & 1 to 2 & & & O & & & & 5 \\
\hline \multirow{3}{*}{S1} & \multirow{3}{*}{WORD} & X, M, D, Z, & integ & & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & Changed p & & & & & & & \\
\hline & & -21474836 & 2147 & 647 & & & & & \\
\hline
\end{tabular}

\section*{<Ladder>}


Position override:. It changes the set target position to the designated position by the instruction.

1. Current position \(\geq\) Changed position: It stops with deceleration.
2. Current position << Changed position: It stops with deceleration at the changed position.
[Note]
1. If the currently not operated channel is executed this instruction, position/speed override change error occurs.
2. If the currently operated channel is executed the other instruction, enable channel error occurs.

\footnotetext{
※ For more information, refer to Motion of SmartStudio user manual.
}

\subsection*{3.2.232 Motion instruction(MTIPT)}

<Ladder>


Line interpolation instruction: It executes line interpolation drive with two axes.


\footnotetext{
※ For more information, refer to Motion of SmartStudio user manual.
}
[Note]
1. The action list designated as speed drive is not available as the axis between line interpolation.
2. The axis which is more distance than the other is set as main axis.
3. Drive data of sub axis is dicided by the calculating from the drive data of main axis.
4. If each distance of two axes is same, CH 1 becomes main axis.

\subsection*{3.2.233 Motion instruction(MTUAI)}

<Ladder>


\section*{[Note]}
1. For utilize indirect drive instruction, set 'TRUE' at 'Enable Ch' of common configuration from [Parameter][MOTION]tab in SmartStudio.
2. There should be pattern number to execute of pattern list from from [Parameter]-[MOTION]tab in SmartStudio.
3. If the currently operated channel is executed the other instruction, enable channel error occurs..
※ For more information, refer to Motion of SmartStudio user manual.

\section*{Autonics \\ Sensors \& Controllers}

\section*{Distributor}
\(\square\) Major Products
Photoelectric Sensors Fiber Optic Sensors Door Sensors Door Side Sensors Area Sensors Proximity Sensors Pressure Sensors Connectors/Sockets Rotary Encoders Panel Meter Counters-Timers Temperature Controlers SSRs/Power Controlers Sensor Controllers Graphic/Logic Panels-Temperature/Humidity Transducers-Switching Mode Power Supplies Control Switches/Lamos/Buzzers-Field Network Devices-Tachometer/Pulse(Rate) Meters Laser Marking System(Fiber, \(\mathrm{CO}_{2}\), Nd:YAG).Laser Welding/Cutting System
- Corporate Headquarters

18, Bansong-ro 513 Beon-gil, Haeundae-gu, Busan, South Korea 48002
- Brazil - Autonics do Brasil Comercial Importadora e Exportadora LTDA

Tel: 55-11-2307-8480 / 3195-4610 / Fax: 55-11-2309-7784 / E-mail: comercial@autonics.com.br
- China - Autonics electronic(Jlaxing) Corporation

Tel: 86-21-5422-5969 / Fax: 86-21-5422-5961 / E-mail: china@autonics.com
- India-Autonics Automation India Private Limited

Tel: 91-22-2768-2570 / E-mail: india@autonics.com
- Indonesia - PT. Autonics Indonesia

Tel: 62-21-8088-8814/5 / Fax: 62-21-8088-4442/0 / E-mail: indonesia@autonics.com
- Iran - Autonics Corp. Iran Representative Office

Tel: 98-21-8872-7251/2 / Fax: 98-21-8872-8556 / E-mail: iran@autonics.com
- Japan - Autonics Japan Corporation

Tel: 81-3-6435-8380 / Fax: 81-3-6435-8381 / E-mail: ja@autonics.com
- Malaysia - Mal-Autonics Sensor Sdn. Bhd.

Tel: 60-3-7805-7190 / Fax: 60-3-7805-7193 / E-mail: malaysia@autonics.com
- Mexico - Autonics Mexico S.A. DE C.V

Tel: 52-55-5207-0019 / Fax : 52-55-1663-0712 / E-mail: ventas@autonics.com.mx
- Russia - Autonics Rus LLC

Tel/Fax : 7-495-660-10-88 / E-mail: russia@autonics.com
- Turkey - Autonics Otomasyon Ticaret Ltd. Sti

Tel: 90-216-365-9117/3/4 / Fax: 90-216-365-9112 / E-mail: turkey@autonics.com
- USA - Autonics USA, Inc.

Tel: 1-847-680-8160 / Fax: 1-847-680-8155 / E-mail: sales@autonicsusa.net
- Vietnam - Cong Ty Thhh Autonics Vina Tel: 84-28-3771-2662 / Fax: 84-28-3771-2663 / E-mail: vietnam@autonics.com
- Any proposal for a product improvement and development: Product@autonics.com```

