XP-BD Manual

Operating Manual

68119

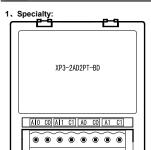
Analog Input and Temperature Sampling Board XP3-2AD2PT-BD

Configure method of BD board

- Configure Method of BD Board:

 1) Install BD correctly on the main unit;

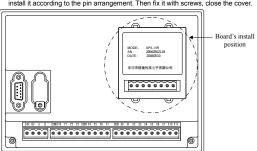
 2) Then connect the model online via XCP edit tool, in the "Window" menu, choose "Config. BD Board(C)" as shown in the following graph1.


 3) Click it, in the "Config. BD Board(C)" dialog box, choose "Other BD" (Just as showed in the graph 2), click "OK" to download the program.

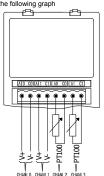
Graph 1

Graph 2

Analog Input and Temperature Sampling Board XP3-2AD2PT-BD



- 14 bits high precision analog input 2 channels voltage 0~10V, 0~5V (selectable)
- analog input
 2 channels PT temperature testing resistor (PT100 two-line form) temperature sensor analog input


2、General Specification							
Item	Voltage Input	Temperature Input					
Analog Input Signal	DC0~5V \ 0~10V (Input resistor 300kΩ)	Platinum Resistor PT100 (2 lines format)					
Temperature Testing Bound	-	-100~350°C					
Distinguish Ratio	0.15mV (10/16383)	0.1℃					
Digital Output Bound	0~16383	-1000~3500					
Integrate Precision	\pm 0.8% of full scale						
Convert Time	15ms×4 channels						
PID Output Value	0~K4095						
Vacant Defaulted Value	0	3500					
Input Specialty	Digital output 10V/Sv	3500 Cupus Cupus 1000 Temperature liquid 350 °C					
Insulation	No insulation among each channel of PLC						
Engrossed points	point (As operated via data register, so the engrossed points are not limited by PLC's max control points)						

3. External Installation and Connection

The Installation Method of Board:
 Open the board's cover at the back of XP3 (As shown in the following graph), install it according to the pin arrangement. Then fix it with screws, close the cover.

2) Connection: See the following graph

4、Assignment of Input ID

This BD board does not engross I/O units, the converted data will directly send into PLC register. The channel's correspond PLC register ID is:

Channel	0CH	1CH	2CH	3CH	
AD signal/Temperature	ID1000	ID1001	ID1002	ID1003	
value					
PID output value	ID1004	ID1005	ID1006	ID1007	
Set the target value	QD1000	QD1001	QD1002	QD1003	
Kp	QD	1004	QD1009		
Ki	QD	1005	QD1010		
-Kd	QD	1006	QD1011		
Diff	QD	1007	QD1012		
Death	QD	1008	-		
Start/Stop	Y1000	Y1001	Y1002	Y1003	

Note:

- NO:: proportion parameter; Ki: Integral parameter; Kd: Differential parameter;
 Diff: Control proportion band;
- PID value: PID output value (0~4095)

 2) Control coil's status (Y1000/Y1001): 0: means close PID control; 1: means start PID control

- Description:

 1) 0CH, 1CH are AD input channels; 2CH, 3CH are Pt input channels

 2) Kp: proportion parameter; Ki: Integral parameter; Kd: Differential parameter; Diff: Control band:
 - Control Band Diff: Carry on PID control in the assigned bound, beyond the bound,
 - Control Band Diff: Carry on PID control in the assigned bound, beyond the bound, don't carry on PID control is closed when Y is 0, open PID control when Y is 1 Death Bound "Death": Compare the current PID output value with the preceding PID output value. If their difference is less than the set death bound, the module will abandon the current PID output value, still transfer the preceding PID output value to PLC main unit

3. Setting of Working Mode

1) Expansion's input has voltage 0~5V. 0~10V these two modes and filter form to select. Set via special FLASH data register FD8306 in PLC. Refer to the graph by the right, each register set the 4 channels' mode, each register has 16 bits. From low bit to high bit, each 4 bits set one channel's mode

2) Each channel's working mode is assigned by the four bits of the correspond register, each bit's definition is shown below: Register FD8306:

CH1			CH 0				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
00: 1/2 fil 01: not fil 10: 1/3 fil 11: 1/4 fil	ter ter	-	0:0~10V 1:0~5V	00: 1/2 fil 01: not fil 10: 1/3 fil 11: 1/4 fill	ter ter	-	0:0~10V 1:0~5V

1) Each parameter's reference value: Kp=20~100: Ki=5~20: Kd=200~500: DIFF=100~200

This reference value only for normal condition, according to the locale detail condition, each reference value could be beyond the bound.

6. Application of PID Output Value

When carry on PID output value
When carry on PID adjustment, this BD board heat with the cycle of 2
second. According to the comparison of PID output value (Channel 1 ID1004. channel
2 ID1005) and 4095, open and cut of heating form different high-low level ratio. Assume
the output value of PID is X (0≤X≤4095). In the heat cycle of 2 seconds, heat with 2X/4095 second. Stop heat with (2-2X/4095).

7、Program
E.g.1、Real time read the AD value of CH0, then carry on PID parameters setting with E.g.1. Real time read the AD value CH0, then read the PID output value.

CH3			CH 2				
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
00: 1/2 fil 01: not fil 10: 1/3 fil 11: 1/4 fil	ter ter	-	-	00: 1/2 fil 01: not fil 10: 1/3 fil 11: 1/4 fil	ter ter	-	ı

1) Usage of four parameters: Proportion parameter (Kp), integral parameter (Ki),

differential parameter (Kd), control proportion band (Diff)
Parameter P is proportion parameter, mainly reflect system's wrap, when system wrap appears, carry on control immediately to decrease the wrap.
Parameter I is integral parameter, mainly used to remove net difference, improve the

system's no-difference degree Parameter D is differential parameter, mainly used to control signal's change trend, decrease system's shake

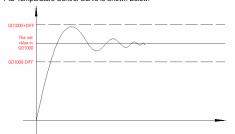
Temperature control proportion band means: in the assigned bound, carry on PID control beyond the bound, do not carry on PID control.

5. Control Specialties

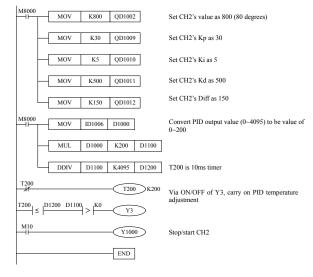
1) Usage of four parameters: Proportion parameter (Kp), integral parameter (Ki),

1) Usage of four parameters: Proportion parameter (Rt), integral parameter (Rt), differential parameter (Rd), control proportion band (Diff)

Parameter P is proportion parameter. mainly reflect system's wrap, when system wrap appears, carry on control immediately to decrease the wrap.


Parameter I is integral parameter, mainly used to remove net difference, improve the system's no-difference degree

Parameter D is differentia decrease system's shake. meter D is differential parameter, mainly used to control signal's change trend,


Temperature Control Band Means: in the assigned bound, carry on PID control, beyond the bound, do not carry on PID control

Control Specialties
 The bound of carry on PID adjustment is: (QD-Diff , QD+Diff), when temperature is low than QD-Diff, controller go on heating, when temperature is higher than QD+Diff, controller stop heating.

PID Temperature Control Curve is Shown Below:

E.g.2. PID temperature control example

